

VII. Programa Indicativo para la Instalación y Retiro de Centrales Eléctricas (PIIRCE).

PRODESEN 2019-2033

VII. PROGRAMA INDICATIVO PARA LA INSTALACIÓN Y RETIRO DE CENTRALES ELÉCTRICAS

onforme al Artículo 13 de la Ley de la Industria Eléctrica, "Con el objetivo de promover la ≠instalación de los recursos suficientes para satisfacer la demanda en el Sistema Eléctrico Nacional y cumplir los objetivos de Energías Limpias, la Secretaría desarrollará programas indicativos para la instalación y retiro de las Centrales Eléctricas, cuyos aspectos relevantes se incorporarán en el Programa de Desarrollo del Sistema Eléctrico Nacional". Por otra parte, en el Reglamento de la Ley de la Industria Eléctrica, en su Artículo 7, se establece que"los programas indicativos para la instalación y retiro de Centrales Eléctricas no serán requisito para la instalación o retiro de Centrales Eléctricas, y no generarán el derecho a obtener una autorización, permiso, derecho o garantía de resultados económicos o financieros esperados para las Centrales Eléctricas que se instalen o pretendan instalarse en congruencia con dichos programas". Para la definición de este Programa, se llevó acabo una revisión exhaustiva de los proyectos de generación de los diferentes participantes en el sector eléctrico, con el fin de determinar aquellos más factibles de llevarse a cabo.

VII.1 Programa de Centrales Eléctricas para el fortalecimiento de las empresas productivas del Estado

En el presente ejercicio de planeación, de conformidad con la nueva política energética de la administración pública federal, no se considera el retiro de Centrales Eléctricas.

Con el fin de reactivar el desarrollo de Centrales Eléctricas en la Empresa productiva del Estado, se plantea la incorporación en el mediano plazo de centrales de ciclo combinado, geotermoeléctricas y de cogeneración eficiente; además de la rehabilitación y modernización de algunas hidroeléctricas en operación, así como el equipamiento de otras en instalaciones hidráulicas existentes (ver Tabla 7.1).

TABLA 7.1 CENTRALES ELECTRICAS PROPUESTAS POR CFE	

	CAPACID	AD POR INS	TALAR (MW					
NOMBRE DEL PROYECTO	2019	2020	2021	2022	2023	2024	2025	TOTAL
CC EMPALME I	770							770
CC EMPALME II	791							791
CC TOPOLOBAMPO II	887							887
CC ESCOBEDO	857							857
CC VALLE DE MEXICO II	615							615
CG LOS AZUFRES	25							25
CC TOPOLOBAMPO III		765						765
CC NORTE III		907						907
CC CENTRO		642						642
Subtotal	3,945	2,314	· ·	949	27	-	7-2	6,259
HIDROELÉCTRICOS			45	83	149	143	52	471
CC SALAMANCA				757			~	757
CCC SAN LUIS POTOSÍ				740				740
CG HUMEROS III FASE B					25			25
CC SAN LUIS RIO COLORADO					450			450
CI BAJA CALIFORNIA SUR VI					42			42
CC LERDO					911			911
CC TUXPAN					964			964
COGENERACIÓN TULA		320						320
COGENERACIÓN MINATITLÁN						870		870
COGENERACIÓN SALINA CRUZ							812	812
Subtotal	(8)	320	45	1,580	2,541	1,013	864	6,362
TOTAL	3,945	2,634	45	1,580	2,541	1,013	864	12,621

En la Tabla 7.2 se presentan los proyectos de generación renovable que la CFE ha reportado, con base en la política energética, estarán sujetos a los estu-

dios técnicos-económicos, a la capacidad de generación de recursos propios y al financiamiento de la propia empresa.

TABLA 7.2 PROYECTOS RENOVABLES PROPUESTOS POR CFE

	CAPACID	AD POR IN	STALAR (MV	v)				
PROYECTOS DE GENERACIÓN	2019	2020	2021	2022	2023	2024	2025	Total
SURESTE I FASE I					105			105
SURESTE II Y III					1100000	600		600
SURESTE IV Y V						600		600
FOTOVOLTAICO CERRO PRIETO II					150	1000000		150
FOTOVOLTAICO VILLITA					62			62
FOTOVOLTAICO CENTRAL					250	200		450
FOTOVOLTAICO COSTA DE JALISCO Y NAYARIT						340		340
FOTOVOLTAICO GUADALAJARA						250		250
Subtotal		*	*	(#)	567	1,990	-	2,557

En la tabla 7.2. A se presentan proyectos de generación renovable que la CFE tiene en estudio. Ocho corresponden a proyectos geotermoeléctricos, con

una capacidad total de 117MW, y la reactivación de la central hidroeléctrica Chicosén II de240MW de capacidad.

TABLA 7.2.A PROYECTOS RENOVABLES DE CFE EN ESTUDIO

	CAPA	CIDAD POR	INSTALAR (N	/W)				
NOMBRE DE PROYECTO	2019	2020	2021	2022	2023	2024	2025	
CG CERRITOS COLORADOS FASE I						25		25
CG ACOCULCO FASE I						10		10
CG CERRO PRIETO SUSTITUCIÓN US						40		40
CG CHICHONAL FASE I						10		10
CG LOS NEGRITOS FASE I						10		10
CG SAN MARCOS FASE I						10		10
CICLO BINARIO SANTA ROSALIA					1.7			2
CG AZUFRES IV						10		10
CH CHICOASEN II						240		240
TOTALES	14	523	12		2	355		357

VII.2 Programa Indicativo de Incorporación de Centrales Eléctricas

El programa de nueva capacidad en el corto/mediano plazo 2019-2021/2022, resultó de la revisión de los proyectos con altas expectativas de realización de cada uno de los participantes considerados en la LSPEE y en la LIE. Posterior a 2021, con fundamento en los lineamientos de política energética, se consideran proyectos de generación limpia-renovables, cogeneración eficiente y tecnologías convencionales.

La ubicación regional y fechas de operación de tecnologías convencionales es resultado de necesidades regionales por confiabilidad y de la optimización del sistema.

La Tabla 7.3, muestra el detalle del Programa Indicativo para la Instalación y Retiro de Centrales Eléctricas y en las Tabla 7.4 y 7.5 el resumen por Gerencia de Control y por tipo de tecnología de generación.

En los primeros años se indican los proyectos firmes. Apartir de 2023 se indican proyectos que resultan del proceso de optimización de mediano y

largo plazos, en éstos se indica la tecnología, capacidad,ubicación regional y año de operación.

TABLA 7.3 PROGRAMA INDICATIVO PARA LA INSTALACIÓN Y RETIRO DE CENTRALES ELÉCTRICAS - ESCENARIO DE PLANEACIÓN

NOMBRE	AÑO	ADICIONES O RETIROS	CONTRATO O UNIDAD	TIPO	MW	MES	GERENCIA DE CONTROL
Los Humeros U 11 San Ignacio	2019	Adiciones	GEN GEN	GEO FV	27 18	ene ene	ORI PEN
Solem II			GEN	FV	140	ene	OCC
TAI-VI La Trinidad PI			GEN	FV	30	ene	NTE
TAI-VI La Trinidad PII			GEN	FV	30	ene	NTE
TAI-VI La Trinidad PIII			GEN	FV	30	ene	NTE
Cogeneración Industrial Papelera San Luis S.A. De C.V.			GEN	COGEF	2	ene	occ
Don Diego Solar (Antes San Fernando)			AUT	FV	125	ene	NOR
Energreen			GEN	BIO	2	ene	CEL
Sears Galerías Monterrey			COG	COGEF	1	ene	NES
Planta Solar Orejana			GEN	FV	125	feb	NOR
Tres Mesas 3			GEN	EO	50	feb	NES
Bluemex Power I			GEN	FV	90	mar	NOR
Energía San Luis De La Paz			GEN	CC	22	mar	occ
Munisol S.A.P.I.			AUT	FV	22	mar	NOR
San Luis Potosí AA			GEN	CI	20	mar	occ
Ahumada IV Solar PV S.A. De C.V. CCC Tula Paquete I			PP GEN	FV CC	30 275	mar	NTE CEL
Energía Eléctrica De Chihuahua S.A. De C.V.			PP	FV	30	mar mar	NTE
Energía Solar Sonerense S.A. De C.V.				FV			NTE
Fotovoltaica De Ahumada S.A. De C.V.			PP PP	FV	30 30	mar mar	NTE
Lamosa Energía de Monterrey			GEN	CI	8	mar	NES
Planta España			GEN	CI	3	mar	CEL
Planta España Planta Reforma			GEN	CI	3	mar	CEL
Planta solar Santa María			GEN	FV	148	mar	NTE
Refractarios básicos			GEN	CI	5	mar	NES
Absormex CMPC Tissue S.A. De C.V.			GEN	COGEF	23	mar	NES
CCC Valle De México II			GEN CFE	CC	615	mar	CEL
Aldebaran			PP	FV	15	abr	occ
CC Noreste (CC Escobedo)			GEN	cc	857	abr	NES
Grupo Gusi, S.P.R. De R.L. De C.V.			GEN	BIO	3	abr	OCC
Recurrent Energy México Development, S. De R.L. De C.V.			GEN	FV	63	abr	occ
Rio Escondido			GEN	CAR	129	abr	NES
Cogeneración De Altamira S.A. De C.V.			COG	COGEF	350	abr	NES
Energía Solar De Poniente S. De R.L. De C.V.			GEN	FV	82	abr	NTE
Laguna Solar			GEN	FV	101	abr	NTE
Mi Ranchito Sur			AUT	FV	25	abr	NOR
Pier I (Agrupado Con Pier IV)			AUT	EO	87	abr	ORI
Pier IV (Agrupado Con Pier I)			AUT	EO	134	abr	ORI
RMSC Comercio, S.A.P.I. DE C.V. (ALAIA)			GEN	FV	30	abr	NTE
Topolobampo II			PIE	CC	887	abr	NOR
Aguas Tratadas Del Valle De México, S.A. De C.V.			GEN	BIO	30	may	CEL
BNB Villa Ahumada Solar			GEN	FV	150	may	NTE
CFE Empalme I			GEN CFE	CC	770	may	NOR
CFE Empalme II			GEN CFE	CC	791	may	NOR
Rumorosa Solar			GEN	FV	41	may	BC
San Miguel De Allende 5			GEN	FV	30	may	occ
Tampico I			AUT	FV	30	may	occ
Tampico II			AUT	FV	60	may	occ
Trompezón			GEN	FV	126	may	occ
Azufres III Fase II			GEN CFE	GEO	25	jun	occ
Desarrollos Solares De Delicias S.A.P.I De C.V (E/1493/AUT/2015)			AUT	FV	4	jun	NTE
Desarrollos Solares De Delicias S.A.P.I De C.V (E/1495/AUT/2015)			AUT	FV		jun	NTE
Desarrollos Solares De Delicias S.A.P.I De C.V (E/1494/AUT/2015) Sears Tezontle			AUT COG	FV COGEF	4	jun	NTE CEL
Akin Solar S.A. De C.V.			AUT	FV	100	jun jun	NOR
ALTAIR Importación Y Exportación, S.A.P.I. DE C.V. (ALAIA)			AUT	FV	30	jun	NTE
Energía Solar Alaia V S.A.P.I. De C.V. (Alaia)			AUT	FV	30	jun jun	NTE
Energia Solar Alaia IV S.A.P.I. De C.V. (Alaia) Energia Solar Alaia IV S.A.P.I. De C.V. (Alaia)			AUT	FV	30	jun	NTE
Energía Solar Alaia III S.A.P.I. De C.V. (Alaia)			AUT	FV	30	jun	NTE
Energia colar riada in colar il De C.V. (Aldia)			7.01	. •	- 55	juii	l Hit

NOMBRE	AÑO	ADICIONES O RETIROS	CONTRATO O UNIDAD	TIPO	MW	MES	GERENCIA DE CONTROL
Energía Solar Alaia II S.A.P.I. De C.V. (Alaia)			AUT	FV	30	jun	NTE
Astillero Sabinita			GEN	FV	100	jun	occ
AT Solar V			GEN	FV	180	jun	NOR
Delicias Solar			PP	FV	30	jun	occ
El Mezquite			GEN	EO	250	jun	NES
Energía Limpia De Amistad II			GEN	EO	99	jun	NES
Kambul			GEN	FV	30	jun	PEN
Nonoalco			GEN	TG	89	jun	CEL
Palma Loca			GEN	FV	400	jun	NES
Parque Solar Conejos			GEN	FV	80	jun	NTE
Potosí Solar			GEN	FV	300	jun	NES
PS Aguascalientes Sur I Salitrillos			GEN	FV EO	30 99	jun	OCC NES
			GEN			jun	
Sears La Esfera			GEN	COGEF	1	jun	NES ORI
Sears Puebla Zaragoza			GEN	COGEF		jun	=
TALIV-NEO			GEN	FV FV	23	jun	NTE
TALV P-10 TALV P-15			GEN GEN	FV FV	10 15	jun jun	NTE NTE
Tepezala I			GEN	FV	100	jun	OCC
Tuli			GEN	FV	150	jun	NES
Tuto II			GEN	FV	138	jun	NOR
Villaldama I			AUT	FV	2	jun	NES
X-Elio FV Xoxocotla S.A.P.I. De C.V.			GEN	FV	70	jun	ORI
Elan Generador Dos S.A. De C.V.			GEN	CI	4	jul	CEL
Fotovoltaico Flex			GEN	CI EV	2		NTE
Generación Eléctrica Cuprum			GEN	CI	2	jul jul	CEL
Parque Eólico Reynosa			GEN	FO	431	sep	NES
(Central Térmica Pichilingue)			GEN	TG	100	sep	BCS
Cajeme Solar S.A. De C.V.			AUT	FV	10	sep	NOR
El Carmen			GEN	CC	950	sep	NES
Eólica Mesa La Paz			GEN	EO	300	sep	NES
Huerto Solar Fotovoltaico Durango			GEN	FV	100	sep	NTE
Eólica Peñasco Dos			GEN	EO	2	oct	NOR
Border Solar			AUT	FV	150	nov	NTE
Pachamama			GEN	FV	300	nov	OCC
Potosí Solar			AUT	FV	30	dic	occ
Vicente Guerrero			AUT	EO	118	dic	NES
Eólica De Guanajuato			AUT	EO	63	dic	occ
Fortius			GEN	FV	6	dic	OCC
Sears La Victoria			GEN	COGEF	1	dic	occ
Calera			GEN	FV	80	dic	OCC
Carabina I			AUT	EO	200	dic	NES
Central Hidroeléctrica Solis			PP	HID	15	dic	OCC
Central LFGE León			AUT	BIO	3	dic	OCC
Delaro, S. De R.L. De C.V.			AUT	EO	117	dic	NES
Eólica Mamulique			AUT	EO	42	dic	NES
Kabil			GEN	EO	30	dic	PEN
Kabil II			GEN	EO	30	dic	PEN
Los Pinos			PP	FV	40	dic	occ
Pollux Energy Project S.A. De C.V.			PP	FV	30	dic	NES
Prosolia Internacional De México, S.A. De C.V.			pp	FV	30	dic	NTE
Salsipuedes Solar			AUT	FV	30	dic	occ
Sol De Los Manzanos			AUT	FV	30	dic	NTE
Solax Fotovoltaico Arista			рр	FV	30	dic	occ
Tepeyahualco			GEN	FV	100	dic	ORI
Vientos De Bella Unión S. De R.L. De C.V.			AUT	FV	50	dic	NES
					12,637		

NOMBRE	AÑO	ADICIONES O RETIROS	CONTRATO O UNIDAD	TIPO	MW	MES	GERENCIA DE CONTROL
Norte III	2020	Adiciones	GEN CFE	CC	907	ene	NTE
CCC Centro Concunul			GEN CFE GEN	CC FV	642 70	ene ene	ORI PEN
K'IIN S.A.P.I. De C.V.			AUT	FV	30	ene	PEN
Sol De Insurgentes			GEN	FV	23	ene	BCS
Topolobampo III			PIE	CC	765	ene	NOR
Versalles De Las Cuatas-I			GEN	FV	21	feb	NTE
Versalles De Las Cuatas-II			GEN	FV	21	feb	NTE
Versalles De Las Cuatas-III			GEN	FV	21	feb	NTE
Eólica Santiago			AUT	EO	106	mar	occ
CCC EVM II			GEN	CC	850	mar	CEL
Parque solar los cuervos			GEN	FV	200	abr	OCC
Los Molinos			GEN	EO	171	abr	NES
Cogeneración Tula Eolica Tres Mesas 4			GEN CFE GEN	COGEF	320 96	abr	CEL NES
Guerrero Negro IV (Mulege) U1			GEN CFE	EO CI	96 4	abr jun	NES MUL
Guerrero Negro IV (Mulege) U2			GEN CFE	CI	4	jun	MUL
Magdalena			GEN	FV	500	jun	CEL
Magdalena 2			GEN	FV	220	jun	CEL
Parque Eólico Parras			AUT	EO	50	jun	NTE
Ak KIN Green Power Parek S. De R.L. De C.V.			GEN	FV	100	jun	NES
Amistad III			GEN	EO	99	jun	NES
Amistad IV			GEN	EO	150	jun	NES
Bacabachi I (Navojoa Solar)			GEN	FV	200	jun	NOR
Central Eólica Gunna Sicarú I			GEN	EO	48	jun	ORI
Central Eólica Gunna Sicarú II			GEN	EO	252	jun	ORI
Chicxulub I			GEN	EO	70	jun	PEN
El Mayo			GEN	FV	99	jun	NOR
Energía Renovable De La Península, S.A.P.I. De C.V.			GEN	EO	90	jun	PEN
Eólica De Guadalupe			GEN	EO	300	jun	NES
Las Estrellas			GEN	EO	198	jun	NES
Los Ramones Pachamama II			GEN	TG FV	550 330	jun	NES ORI
Pacnamama II Parque Solar Nueva Xcala			GEN GEN	FV	200	jun jun	CEL
Parque Solar Villanueva MP			GEN	FV	150	jun	NTE
Potreros Solar			GEN	FV	270	jun	OCC
San Matías			AUT	EO	30	jun	BC
Solar Abril 99			GEN	FV	99	jun	NOR
Tastiota			GEN	FV	100	jun	NOR
Vientos Del Altiplano			AUT	FV	40	jun	NES
Eólica Chinampas			AUT	EO	64	jul	occ
Np Energía La Lucha			GEN	FV	130	jul	NTE
Pima Solar I			GEN	FV	110	oct	NOR
CC Tierra Mojada			GEN	CC	874	dic	occ
Mesa Morenos			AUT	EO	76	dic	OCC
Parque Eólico Dolores			GEN	EO	269	dic	NES
Parque Eólico Santa Cruz			GEN	EO	138	dic	NES
San Julián			AUT	EO	40	dic	occ
San Pedro			AUT	EO	30	dic	OCC
Ciénega De Mata			GEN	FV	200	dic	OCC
Cuyoaco			GEN	FV	200	dic	ORI
Horus Solar, S.A. De C.V.			GEN	FV	95 10623	dic	occ
CGS PV 02	2021	Adiciones	GEN	FV	89	ene	occ
Eólica Palo Alto		,	AUT	EO	71	ene	OCC
Ticul I			GEN	FV	189	ene	PEN
Ticul II			GEN	FV	94	ene	PEN
Eólica Fenicias			AUT	EO	168	mar	NES
RM Angostura U1			GEN CFE	HID	20	abr	ORI

NOMBRE	AÑO	ADICIONES O RETIROS	CONTRATO O UNIDAD	TIPO	MW	MES	GERENCIA DE CONTROL
RM Malpaso U1			GEN CFE	HID	12	abr	ORI
RM Mazatepec U1			GEN CFE	HID	6	abr	ORI
Complemento Novillo U1			GEN CFE	HID	5	abr	NOR
RM Portezuelos I y II (1898) U1			GEN CFE	HID	2	abr	ORI
Amata			GEN CFE	HID	15	abr	NOR
Optimizado Tijuana TG U1			GEN CFE	TG	100	abr	BC
Optimizado Tijuana TG U2			GEN CFE	TG	100	abr	BC
El Clérigo			GEN	CC	500	may	NES
Chicxulub II			GEN	EO	88	jun	PEN
Helios			GEN	FV	150	jun	NES
Rancho Del Norte			GEN	EO	250	jun	NES
Cerro Iguana			GEN	EO	200	dic	ORI
Palmita			GEN	EO	110	dic	ORI
					2,169		
Tuxpan Iberdrola	2022	Adiciones	GEN	CC	1000	ene	ORI
RM Angostura U2			GEN CFE	HID	20	abr	ORI
RM Malpaso U2			GEN CFE	HID	12	abr	ORI
RM Mazatepec U2			GEN CFE	HID	6	abr	ORI
RM Zimapán U1			GEN CFE	HID	11	abr	occ
Complemento Novillo U2			GEN CFE	HID	5	abr	NOR
RM Comedero U1			GEN CFE	HID	8	abr	NOR
RM Portezuelos I y II (1898) U2			GEN CFE	HID	2	abr	ORI
RM Oviachic U1			GEN CFE	HID	2	abr	NOR
RM Sanalona U1			GEN CFE	HID	2	abr	NOR
RM Camilo Arriaga U1			GEN CFE	HID	1	abr	NES
U-3 La Amistad			GEN CFE	HID	12	abr	NES
Equip. Josefa Ortíz De Domínguez			GEN CFE	HID	10	abr	NES
Amp. Cecilio Del Valle			GEN CFE	HID	7	abr	ORI
Francisco Zarco			GEN CFE	HID	10	abr	NTE
Amuchiltite			GEN CFE	HID	8	abr	occ
Salamanca			GEN CFE	CC	757	abr	occ
San Luis Potosí			GEN CFE	CC	740	abr	occ
Optimizado Mexicali TG U1			GEN CFE	TG	100	abr	BC
Optimizado Mexicali TG U2			GEN CFE	TG	100	abr	BC
Ecowind			GEN	EO	100	dic	ORI
El Sauzal			GEN	EO	200	dic	ORI
Parque Eólico Iggu			GEN	EO	150	dic	ORI
Zapoteca Energia I			GEN	EO	70	dic	ORI
					3,331		
Humeros III Fase B	2023	Adiciones	GEN CFE	GEO	25	abr	ORI
San Luis Río Colorado			GEN CFE	CC	450	abr	BC
Baja California Sur VI			GEN CFE	CI	42	abr	BCS
Lerdo			GEN CFE	CC	911	abr	NTE
Tuxpan			GEN CFE	CC	964	abr	ORI
Fotovoltaico Cerro Prieto II			GEN CFE	FV	150	abr	BC
Fotovoltaico Villita			GEN CFE	FV	62	abr	CEL
Fotovoltaico Central			GEN CFE	FV	250	abr	CEL
Sureste I Fase I			GEN CFE	EO	105	abr	ORI
RM Angostura Us 3 y 4			GEN CFE	HID	40	abr	ORI
RM Malpaso U 3 y 4			GEN CFE	HID	24	abr	ORI
RM Mazatepec U3			GEN CFE	HID	6	abr	ORI
RM Zimapán U2			GEN CFE	HID	11	abr	occ
Complemento Novillo U3			GEN CFE	HID	5	abr	NOR
RM Comedero U2			GEN CFE	HID	8	abr	NOR
RM Oviachic U2			GEN CFE	HID	2	abr	NOR
RM Sanalona U2			GEN CFE	HID	2	abr	NOR
RM Platanal			GEN CFE	HID	3	abr	occ
RM Camilo Arriaga U2			GEN CFE	HID	1	abr	NES

NOMBRE	AÑO	ADICIONES O RETIROS	CONTRATO O UNIDAD	TIPO	MW	MES	GERENCIA DE CONTROL
RM Electroquímica			GEN CFE	HID	1.3	abr	NES
Cerro de Oro Presa CONAGUA UI			GEN CFE	HID	15	abr	ORI
Luis L. León (El Granero)			GEN CFE	HID	30	abr	NTE
Presa Picachos Presa CONAGUA			GEN CFE	HID	15	abr	NOR
Vicente Guerrero			GEN CFE	HID	10	abr	ORI
Aprovechamiento Cutzamala			GEN CFE	HID	3	abr	CEL
Rosetilla			GEN CFE GEN CFE	HID HID	3 10	abr	NTE ORI
Juan Sabines			GEN CFE GEN CFE	HID	15	abr abr	NOR
Eustaquio Buelna			GEN CFE	EO	50	abr	BC
Optimización			GEN	EO	20	abr	BC
Optimización Optimización			GEN	FV	50	abr	BC
Optimización			GEN	FV	50	abr	BC
Opumizacion			GEN		3,332	abi	ВС
Tizimin II	2024	Adiciones	GEN	EO	76	ene	PEN
Sureste II y III			GEN CFE	EO	600	abr	ORI
Sureste IV y V			GEN CFE	EO	600	abr	ORI
Fotovoltaico Central			GEN CFE	FV	200	abr	CEL
Fotovoltaico Guadalajara			GEN CFE	FV	250	abr	OCC
Fotovoltaico Costa de Jalisco y Nayarit			GEN CFE	FV	340	abr	OCC
Cogeneración Minatitlán			GEN CFE	COGEF	870	abr	ORI
RM Angostura U5			GEN CFE	HID	20	abr	ORI
RM Malpaso U5			GEN CFE	HID	12	abr	ORI
RM Mazatepec U4			GEN CFE	HID	6	abr	ORI
RM Mocuzari			GEN CFE	HID	1	abr	NOR
RM Colina			GEN CFE	HID	1	abr	NTE
RM Minas			GEN CFE	HID	1	abr	ORI
RM Micos			GEN CFE	HID	1	abr	NES
Cerro de Oro Presa CONAGUA U2			GEN CFE	HID	15	abr	ORI
Angostura			GEN CFE	HID	10	abr	NOR
Las Adjuntas			GEN CFE	HID	15	abr	NES
Optimización			GEN	CI	44 3,061	abr	BCS
Cogeneración Salina Cruz	2025	Adiciones	GEN CFE	COGEF	812	abr	ORI
RM Malpaso U6			GEN CFE	HID	12	abr	ORI
Optimización			GEN	CC	479	abr	BC
Optimización			GEN	CC	478	abr	BC
Optimización			GEN	FV	100	abr	OCC
Optimización			GEN	FV	5	abr	NOR
Optimización			GEN	FV	20	abr	OCC
Optimización			GEN	FV	50	abr	CEL
Optimización			GEN	FV	50	abr	NTE
Optimización			GEN	FV	50	abr	NTE
Optimización			GEN	FV	50	abr	OCC
Optimización			GEN	FV	50	abr	NOR
Optimización			GEN	FV	25	abr	NTE
Optimización			GEN	FV	50	abr	NTE
Optimización			GEN	FV	100	abr	NOR
Optimización			GEN	FV	50	abr	ORI
Optimización			GEN	EO	100	abr	NES
Optimización			GEN	FV	100	abr	NES
Optimización			GEN	FV	50 2,630	abr	OCC
Optimización	2026	Adiciones	GEN	CI	44	abr	BCS
Optimización			GEN	FV	100	abr	occ
Optimización			GEN	FV	20	abr	occ
Optimización			GEN	FV	50	abr	CEL

NOMBRE	AÑO	ADICIONES O RETIROS	CONTRATO O UNIDAD	TIPO	MW	MES	GERENCIA DE CONTROL
Outlining			CEN	D./	50	-1	NITE
Optimización			GEN GEN	FV	50	abr abr	NTE NTE
Optimización Optimización			GEN	FV FV	50 50	abr	OCC
Optimización			GEN	FV	50	abr	NOR
Optimización			GEN	EO	150	abr	ORI
Optimización			GEN	FV	25	abr	NTE
Optimización			GEN	FV	50	abr	NTE
Optimización			GEN	FV	33	abr	NOR
Optimización			GEN	FV	50	abr	ORI
Optimización			GEN	EO	100	abr	NES
Optimización			GEN	FV	100	abr	NES
Optimización			GEN	FV	50	abr	OCC
Optimización			GEN	HID	241	abr	ORI
Optimización			GEN	HID	58	abr	ORI
Optimización			GEN	HID	420 1,691	abr	ORI
Optimización	2027	Adiciones	GEN	CI	44	abr	BCS
Optimización			GEN	FV	100	abr	OCC
Optimización			GEN	FV	20	abr	OCC
Optimización			GEN	FV	50	abr	CEL
Optimización			GEN	FV	50	abr	NTE
Optimización			GEN	FV	50	abr	NTE
Optimización			GEN	FV	50	abr	OCC
Optimización			GEN	EO	150	abr	ORI
Optimización			GEN	FV	24	abr	NTE
Optimización			GEN	FV	50	abr	NTE
Optimización			GEN	CC	950	abr	NOR
Optimización			GEN	FV	50	abr	ORI
Optimización			GEN	EO	52	abr	NES
Optimización			GEN	FV	100	abr	NES
Optimización			GEN	FV	50	abr	OCC
Optimización			GEN	HID	14	abr	ORI
Optimización			GEN	HID	420	abr	ORI
Optimización			GEN	HID	420 2,644	abr	ORI
Optimización	2028	Adiciones	GEN	CC	479	abr	BC
Optimización			GEN	FV	100	abr	OCC
Optimización			GEN	FV	50	abr	NOR
Optimización			GEN	FV	20	abr	OCC
Optimización			GEN	FV	50	abr	CEL
Optimización			GEN	CC	415	abr	NTE
Optimización			GEN	FV	50	abr	NTE
Optimización			GEN	FV	50	abr	NTE
Optimización			GEN	FV	50	abr	OCC
Optimización			GEN	EO	62	abr	NES
Optimización			GEN	FV	50	abr	NOR
Optimización			GEN	EO	150	abr	ORI
Optimización			GEN	FV	25	abr	NTE
Optimización			GEN	CC	864	abr	NTE
Optimización			GEN	EO	12	abr	NTE
Optimización			GEN	FV	50	abr	NTE
Optimización			GEN	EO	49	abr	NES
Optimización			GEN	FV	75	abr	NTE
Optimización			GEN	EO	75	abr	NES
Optimización			GEN	EO	50	abr	NES
Optimización			GEN	FV	100	abr	NOR
Optimización			GEN	FV	50	abr	ORI
Optimización			GEN	EO	100	abr	NES

NOMBRE	AÑO	ADICIONES O	CONTRATO O	TIPO	MW	MES	GERENCIA DE
		RETIROS	UNIDAD				CONTROL
Optimizac			GEN	EO	20	abr	NES
Optimizac			GEN	EO	50	abr	NES
Optimizac			GEN	FV	100	abr	NES
Optimizac			GEN	EO	18	abr	OCC
Optimizac			GEN	FV	50	abr	occ
Optimizac			GEN	HID	457	abr	ORI
Optimizac			GEN	HID	135	abr	ORI
Optimizac	ion		GEN	HID	120	abr	ORI
					3,926		
Optimizac	ión 2029	Adiciones	GEN	CI	44	abr	BCS
Optimizac			GEN	FV	200	abr	occ
Optimizac			GEN	FV	54	abr	NOR
Optimizac			GEN	FV	40	abr	occ
Optimizac			GEN	FV	100	abr	CEL
Optimizac			GEN	CC	837	abr	NTE
Optimizac			GEN	FV	100	abr	NTE
Optimizac			GEN	FV	100	abr	NTE
Optimizac			GEN	FV	100	abr	occ
Optimizac			GEN	EO	125	abr	NES
Optimizac			GEN	CC	934	abr	NOR
Optimizac			GEN	EO	300	abr	ORI
Optimizac			GEN	FV	50	abr	NTE
Optimizac			GEN	FV	100	abr	NTE
Optimizac			GEN	EO	150	abr	NES
Optimizac			GEN	EO FV	100	abr	NES
Optimizac			GEN GEN	FV	199	abr	NOR ORI
Optimizac						abr	
Optimizac			GEN	EO	200 100	abr	NES
Optimizac Optimizac			GEN GEN	EO FV	200	abr	NES NES
				FV	100	abr abr	OCC
Optimizac			GEN				
Optimizac	on		GEN	HID	151 4,383	abr	CEL
					4,363		
Optimizac	ión 2030	Adiciones	GEN	CI	44	abr	BCS
Optimizac	ión		GEN	CC	494	abr	BC
Optimizac	ión		GEN	EO	38	abr	occ
Optimizac			GEN	FV	200	abr	occ
Optimizac			GEN	FV	100	abr	NOR
Optimizac			GEN	FV	40	abr	occ
Optimizac	ión		GEN	FV	100	abr	CEL
Optimizac			GEN	FV	100	abr	occ
Optimizac	ión		GEN	EO	125	abr	NES
Optimizac			GEN	EO	300	abr	ORI
Optimizac			GEN	FV	100	abr	NTE
Optimizac			GEN	EO	100	abr	NES
Optimizac			GEN	EO	150	abr	NES
Optimizac			GEN	EO	100	abr	NES
Optimizac			GEN	FV	195	abr	NOR
Optimizac			GEN	СС	950	abr	ORI
Optimizac			GEN	FV	100	abr	ORI
Optimizac			GEN	EO	5	abr	OCC
Optimizac			GEN	EO	200	abr	NES
Optimizac			GEN	EO	40	abr	NES
Optimizac			GEN	EO	100	abr	NES
Optimizac			GEN	FV	200	abr	NES
Optimizac			GEN	EO	35	abr	OCC
Optimizac	OH		GEN	LU	33	anı	OCC

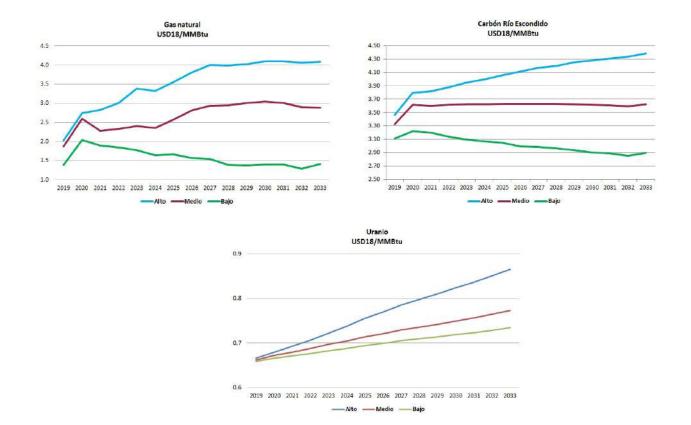
NOMBRE	AÑO	ADICIONES O RETIROS	CONTRATO O UNIDAD	TIPO	MW	MES	GERENCI DE CONTR
Optimización			GEN	FV	100	abr	occ
Optimización			GEN	CC	942	abr	ORI
Optimización			JEI1		4,858	doi	OM
Optimización	2031	Adiciones	GEN	FV	200	abr	occ
Optimización			GEN	FV	100	abr	NOR
Optimización			GEN	FV	40	abr	occ
Optimización			GEN	FV	100	abr	CEL
Optimización			GEN	FV	100	abr	NTE
Optimización			GEN	FV	100	abr	NTE
Optimización			GEN	FV	100	abr	occ
Optimización			GEN	EO	125	abr	NES
Optimización			GEN	FV	100	abr	NOR
Optimización			GEN	EO	300	abr	ORI
Optimización			GEN	FV	50	abr	NTE
Optimización			GEN	FV	100	abr	NTE
Optimización			GEN	CC	471	abr	NOR
Optimización			GEN	CC	950	abr	NOR
Optimización			GEN	FV	150	abr	NTE
Optimización			GEN	EO	54	abr	NES
Optimización			GEN	FV	200	abr	NOR
Optimización			GEN	FV	100	abr	ORI
Optimización			GEN	CC	784	abr	OCC
Optimización			GEN	EO	200	abr	NES
Optimización			GEN	EO	100	abr	NES
Optimización			GEN	FV	200	abr	NES
Optimización			GEN	FV	100 4,724	abr	occ
Optimización	2032	Adiciones	GEN	CI	44	abr	BCS
Optimización	2032	Adiciones	GEN	FV	200	abr	OCC
Optimización			GEN	FV	100	abr	NOR
Optimización			GEN	FV	40	abr	occ
Optimización			GEN	FV	100	abr	CEL
Optimización			GEN	FV	100	abr	NTE
Optimización			GEN	FV	100	abr	NTE
Optimización			GEN	FV	100	abr	occ
Optimización			GEN	EO	125	abr	NES
Optimización			GEN	FV	100	abr	NOR
Optimización			GEN	EO	300	abr	ORI
Optimización			GEN	FV	50	abr	NTE
Optimización			GEN	CC	428	abr	NTE
Optimización			GEN	CC	864	abr	NTE
Optimización			GEN	FV	100	abr	NTE
Optimización			GEN	EO	15	abr	NES
Optimización			GEN	FV	150	abr	NTE
Optimización			GEN	EO	150	abr	NES
Optimización			GEN	EO	100	abr	NES
Optimización			GEN	FV	200	abr	NOR
Optimización			GEN	CC	950	abr	ORI
Optimización			GEN	FV	100	abr	ORI
Optimización			GEN	EO	200	abr	NES
Optimización			GEN	EO	100	abr	NES
Optimización			GEN	FV	200	abr	NES
Optimización			GEN	FV	100 5,017	abr	occ
Optimización	2033	Adiciones	GEN	TG	48	abr	BCS
Optimización			GEN	CC	494	abr	BC

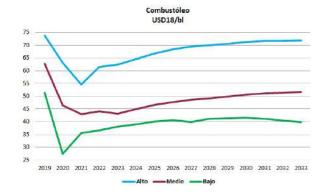
NOMBRE	AÑO	ADICIONES O RETIROS	CONTRATO O UNIDAD	TIPO	MW	MES	GERENCIA DE CONTROL
Optimización			GEN	FV	100	abr	NOR
Optimización			GEN	FV	40	abr	OCC
Optimización			GEN	FV	100	abr	CEL
Optimización			GEN	FV	100	abr	NTE
Optimización			GEN	FV	100	abr	NTE
Optimización			GEN	FV	100	abr	occ
Optimización			GEN	EO	125	abr	NES
Optimización			GEN	FV	100	abr	NOR
Optimización			GEN	EO	300	abr	ORI
Optimización			GEN	CC	432	abr	NTE
Optimización			GEN	FV	50	abr	NTE
Optimización			GEN	FV	100	abr	NTE
Optimización			GEN	EO	53	abr	NES
Optimización			GEN	FV	123	abr	NTE
Optimización			GEN	EO	150	abr	NES
Optimización			GEN	EO	100	abr	NES
Optimización			GEN	FV	200	abr	NOR
Optimización			GEN	FV	100	abr	ORI
Optimización			GEN	CC	784	abr	occ
Optimización			GEN	EO	200	abr	NES
Optimización			GEN	CC	788	abr	occ
Optimización			GEN	EO	100	abr	NES
Optimización			GEN	FV	200	abr	NES
Optimización			GEN	FV	100	abr	occ
					5,286		

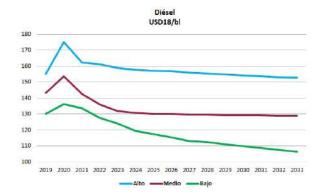
CUADRO 7.4 RESUMEN DEL PROGRAMA INDICATIVO PARA LA INSTALACIÓN DE CENTRALES ELÉCTRICAS POR TECNOLOGÍA Y GERENCIA DE CONTROL REGIONAL 2019- 2033 (MW)

Tecnología	2019		2021		2023	2024	2025	2026	2027	2028	2029		2031		2033	Total
Ciclo Combinado	5,168	4,038	500	2,497	2,325		956		950	1,758	1,771	2,386	2,205	2,243	2,498	29,294
Turbogás	189	550	200	200						100 March		Jaren Marie	Activities and a		48	1,187
Combustión Interna	44	8	0.700000	11110111	42	44		44	44		44	44		44		357
Hidroeléctrica	15		60	114	203	82	12	719	854	712	151					2,922
Carboeléctrica	129						******				7,110					129
Cogeneración eficiente	380	320				870	812									2,382
Eoloeléctrica	2,051	2,277	887	520	175	1,276	100	250	202	586	975	1,193	779	990	1,028	13,288
Fotovoltaica	4,573	3,430	522		562	790	750	678	594	870	1,443	1,235	1,740	1,740	1,713	20,641
Geotérmica	52				25											77
Bioenergía	37															37
Total: Energía Limpia:	12,637 7,108	10,623 6,027	2,169 1,469	3,331 634	3,332 965	3,061 ° 3,017 °	2,630 1,674	1,691	2,644 1,650	3,926 2,168	4,383 2,569	4,858 2,428	4,724 2,519	5,017 ° 2,730 °	5,286 2,741	70,313 39,346

TABLA 7.5 RESUMEN DEL PROGRAMA INDICATIVO PARA LA INSTALACIÓN DE CENTRALES ELÉCTRICAS POR AÑO Y TECNOLOGÍA DE GENERACIÓN 2019–2033 (MW)

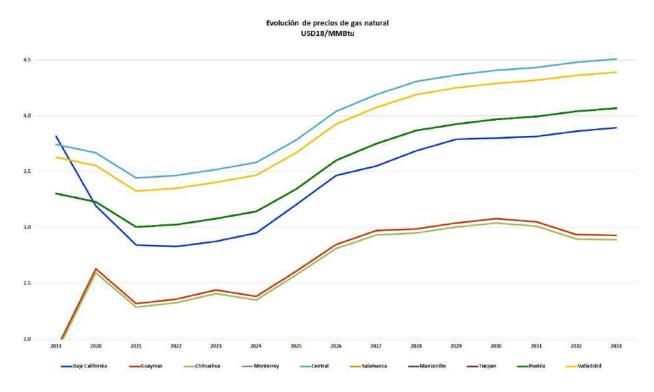

Tecnología	Central	Oriental	Occidental	Noroeste	Norte	Noreste	Peninsular	Baja California	Baja California Sur	Mulegé	Total
Ciclo Combinado	1,740	5,449	4,749	6,518	5,658	2,307		2,873		- 7	29,294
Turbogás	89					550		400	148		1,187
Combustión Interna	11		20			13			306	8"	357
Hidroeléctrica	154	2,543	47	93	44	41					2,922
Carboeléctrica						129					129
Cogeneración eficiente	321	1,683	3			375					2,382
Eoloeléctrica		4,605	546	2	62	7,589	384	100			13,288
Fotovoltaica	2,132	1,400	5,764	3,608	4,370	2,622	431	291	23		20,641
Geotérmica		52	25	5.17.55.55							77
Bioenergía	31		6	10							37
Total:	4,478	15,732	11,159	10,222	10,134	13,625	815	3,664	477	8	70,313
Energía Limpia:	2,638	10,283	6,391	3,703	4,476	10,627	815	391	23	0	39,346




VII.3 Evolución de precios de combustibles

Para este ejercicio de planificación, la CFE proporcionó las trayectorias de precios de combustible para: gas natural, carbón, combustóleo, diésel y uranio enriquecido, para los escenarios alto, bajo y medio. En la Figura 7.1 se muestran esas trayectorias.

FIGURA 7.1 TRAYECTORIAS DE PRECIOS DE COMBUSTIBLES



Evolución de precios de gas natural (escenario medio)

En la Figura 7.2 se muestran de manera gráfica las trayectorias de los precios de gas natural en dife-

rentes regiones del país, para el escenario medio. Independientemente de que los generadores de empresas privadas adquieran en el mercado a precios similares o diferentes el gas natural.

FIGURA 7.2 EVOLUCIÓN DE PRECIOS DE GAS NATURAL ESCENARIO MEDIO

VII.4 Margen de Reserva

La confiabilidad del suministro de energía de un sistema eléctrico depende de su capacidad para satisfacer la demanda máxima de potencia (MW) y del consumo de energía (GWh).

El margen de reserva (MR) de capacidad, es un indicador de la suficiencia de generación en el sistema durante el periodo de estudio.

En los estudios realizados por el CENACE se consideró el MR eficiente, dictado en la política de confiabilidad, el cual considera: 21.3% para el SIN, 20.9% para el Sistema BC y 35% para el Sistema BCS. A nivel sistema, el MR se calcula para la demanda máxima coincidente. La demanda máxima coincidente del SIN ocurre normalmente en el mes de junio en-

tre las 16 y 17 horas. Para los sistemas aislados BC y BCS, la demanda máxima ocurre en agosto entre las 17 y 18 horas, hora local en cada sistema.

La participación de tecnologías renovables, particularmente la solar fotovoltaica, tendrá un efecto importante en el margen de reserva de la demanda máxima vespertina. Sin embargo, la capacidad de estas fuentes de generación estará ausente en la noche, por lo que es fundamental verificar el cumplimiento del margen de reserva en la demanda máxima de la noche. El MR se calcula de acuerdo con lo siguiente:

$$MR \% = 100 * \frac{CD - DM}{DM}$$

donde, CD es la capacidad neta disponible expresada en MW y DM es la demanda máxima neta incluyendo pérdidas eléctricas en MW.

El MR debe ser suficiente para cubrir fallas y eventos críticos como falta temporal en el suministro de combustibles y fenómenos naturales, además de un margen de reserva operativo de 6%.

La capacidad disponible de la generación intermitente, en el punto de operación en demanda máxima, se considera como un porcentaje de su

capacidad, de acuerdo con la estadística de su comportamiento estacional y horario. Los requerimientos de capacidad en sistemas aislados o débilmente interconectados se determinan de manera individual, en función de sus curvas de carga y demandas máximas.

En la tabla 7.6, se presentan los valores de margen de reserva para el escalón de punta de la tarde, del Sistema Eléctrico Nacional. El margen de reserva de Baja California no considera importación de USA.

TABLA 7.6 MARGEN DE RESERVA PARA EL ESCALÓN DE LA TARDE

				1	largen de F	Reserva (%).	Cuatrimes	tre Mayo-A	gosto, Esca	ilón Diurno					
GCR		2020					2025	2026		2028	2029		2031		
BCN	-4.5	-11.8	-8.5	-5.4	9.8	5.9	27.5	24.0	20.9	27.5	22.9	29.2	25.8	21.5	27.8
BCS	35.4	50.3	45.4	40.9	42.2	42.3	38.2	40.4	41.8	37.8	38.6	39.7	35.8	36.7	38.3
Central	14.3	43.4	39.3	53.7	52.7	51.2	50.1	48.9	47.8	46.7	47.0	45.9	44.9	43.8	42.8
Noreste	25.4	47.3	57.6	43.3	47.8	55.2	44.2	39.2	38.1	43.0	39.3	46.1	46.6	57.3	57.6
Noroeste	24.3	37.2	38.5	33.8	33.0	31.9	31.0	29.9	29.0	28.0	29.8	30.9	33.9	36.6	41.0
Norte	19.3	29.8	26.3	21.7	23.7	21.9	21.6	21.4	21.2	24.2	26.2	26.4	29.2	28.8	31.4
Occidental	15.9	32.8	38.0	27.7	18.4	17.5	17.0	16.9	17.1	16.6	21.2	19.5	24.9	22.9	25.7
Oriental	41.0	43.8	40.5	45.5	38.9	35.5	34.9	34.2	36.1	35.7	36.3	36.3	35.5	34.5	33.6
Peninsular	35.8	33.5	45.9	46.5	41.5	42.7	58.7	55.6	55.9	53.2	50.4	51.2	47.1	45.9	41.9
SIN	23.4	39.4	41.6	39.0	36.4	36.5	34.6	33.0	32.8	33.4	34.2	35.0	36.5	37.8	38.8

Como se observa el MR, en el SIN, del escalón de la tarde, en 2019 será cercano a 23%. Entre 2020 y 2022 alcanzará los valores mayores debido a la entrada en operación de capacidad de nuevas centrales a base de energías renovables, principalmente eólicas y solares, así como a la inclusión de centrales de ciclo combinado.

Para Baja California, se registran MR negativos a partir de 2019 y hasta 2022. En estos MR no se han considerado recursos de capacidad que podrían provenir de los sistemas eléctricos del oeste de USA. La Tabla 7.7, presenta los valores de margen de reserva para el escalón de punta nocturno del Sistema Eléctrico Nacional. El margen de reserva de Baja California no considera importación de USA.

TABLA 7.7 MARGEN DE RESERVA PARA EL ESCALÓN NOCTURNO

				Me	irgen de Re	eserva (%), (Cuatrimest	re Mayo-Ag	osto, Escal	ón Nocturn	0				
BCN	-4.5	-11.8	-8.5	-5.4	9.8	5.9	27.5	24.0	20.9	27.5	22.9	29.2	25.8	21.5	27.8
BCS	32.6	45.2	40.7	36.3	37.9	38.1	34.4	36.9	38.7	35.0	36.1	37.6	34.2	35.0	36.7
Central	14.6	30.7	29.9	29.3	26.2	33.8	18.2	14.6	14.2	13.9	13.8	13.5	13.2	12.9	12.6
Noreste	26.6	39.2	45.3	43.6	43.3	31.1	29.6	28.8	28.1	27.6	27.0	26.8	26.4	26.1	25.7
Noroeste	22.7	22,5	21.1	21.2	21.4	20.7	20.1	19.5	21.3	20.7	22.5	21.9	24.7	23.9	23.2
Norte	15.1	20.3	19.7	18.9	15.2	16.4	15.9	15.5	14.9	17.8	19.2	18.8	18.3	20.6	21.2
Occidental	15.9	26.0	25.2	21.8	15.6	15.0	14.4	14.1	13.7	13.3	12.9	12.5	12.9	12.5	13.7
Oriental	27.3	34.8	32.5	30.2	27.3	28.4	28.9	29.1	29.4	29.6	28.8	30.7	29.8	30.0	29.2
Peninsular	23.7	30.5	32.7	25.0	29.5	27.6	45.1	20.3	13.1	12.8	11.6	11.0	11.8	11.7	11.0
SIN	20.6	30.1	30.4	28.4	25.8	24.9	22.6	20.4	20.0	20.0	20.0	20.0	20.0	20.1	20.0

Para el escalón nocturno, el MR del SIN será cercano al 21.0% en 2019 y se incrementará en 2020 y 2021 con la entrada en operación de nuevas centrales eólicas, fotovoltaicas, ciclos combinados y otras tecnologías convencionales. A partir de 2026, el MR en el SIN será del orden de 20%

Para Baja California, se registran MR negativos a partir de 2019 y hasta 2022. En estos MR no se han considerado recursos de capacidad que podrían provenir de los sistemas eléctricos del oeste de USA.

La capacidad actual de la red de transmisión que interconecta los sistemas eléctricos de Baja California con los del oeste de USA es de 408 MW. La importación de capacidad, en los periodos de verano, permitiría atender la demanda, al menos para no tener déficit de capacidad en Baja California duran-

te estos años. A partir de 2021 se ha supuesto la instalación 200 MW de capacidad con unidades turbogás y en 2022 otros 200 MW. Sin embargo, estas capacidades no corresponden a proyectos firmes y se consideran solo con fines indicativos de lo que mínimamente debería instalarse en esos años para salir de la condición de déficit de capacidad en BC. A partir de 2023 se considera entraría en operación una central de ciclo combinado en San Luis Rio Colorado, con capacidad de 450 MW. A partir de2025 con la adición de nuevas centrales de CC el margen de reserva alcanzará el establecido en la Política de Confiabilidad

La figura 7.3, muestra los márgenes de reserva de los tres sistemas eléctricos, así como los valores de referencia del Margen de Reserva Eficiente de Planeación, indicados en la Política de Confiabilidad.

50.0 40.0 30.0 20.0 10.0 0.0 2020 2021 2024 2026 2027 2031 2032 2033 2025 2028 2029 2030 -10.0 -20.0 -SIN - Eficiente SIN - Eficiente BCN - Eficiente BCS

FIGURA 7.3 MARGEN DE RESERVA PARA EL ESCALÓN NOCTURNO

VII.5 Emisiones

El 27 de marzo de 2015 México suscribió compromisos ante las Naciones Unidas para enfrentar el cambio climático, con la denominada *Contribución Prevista y Determinada a nivel Nacional* (INDC, por sus siglas en inglés). La INDC se integra por un componente de mitigación que incluye compromisos internacionales no condicionados, que son

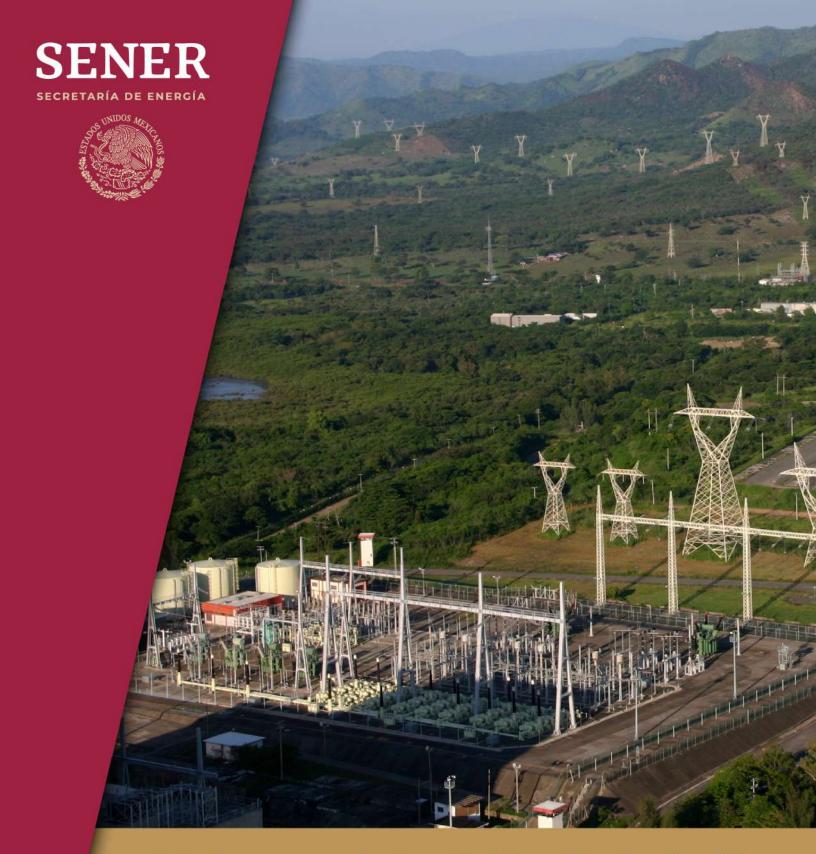
aquellos que el país puede solventar con sus propios recursos.

De acuerdo con el Inventario Nacional de Emisiones de Gases y Compuestos de Efecto Invernadero 2015, la generación de energía eléctrica es la segunda actividad con la mayor aportación en la emisión de GEI en México, solo por debajo del sector transporte, y tiene el compromiso INDC de reducir sus

emisiones de GEI a un nivel no mayor a 139 $\rm MTCO_2e$ al 2030.

La Tabla 7.8, presenta la estimación de emisiones de CO₂ como resultado de la producción de energía en SEN. En estas estimaciones no se incluyen las correspondientes a centrales que autoabastecen de manera local su demanda.

Se estima que en 2018 se emitieron 102 MTCO₂e, a partir de 2019 las emisiones disminuyen y en 2020 se llega a un mínimo de 85MTCO₂, como resultado de la integración de fuentes de generación renovable en este periodo. Al año 2024 llegarían a 89MT-CO₂e y en 2033 a 105 MTCO₂e. Estos valores son inferiores respecto al nivel definido en el compromiso INDC, lo cual es resultado de la integración de fuentes renovables de energía y centrales convencionales a base de gas natural con altas eficiencias de conversión y menores emisiones.


TABLA 7.8 EMISIONES DE CO₂ DE CENTRALES ELÉCTRICAS INTERCONECTADAS A LA RNT

	Emisiones de CO₂e en el SEN en millones de toneladas								
Periodo	Total								
2018	102								
2019	95								
2020	85								
2021	86								
2022	89								
2023	90								
2024	89								
2025	89								
2026	91								
2027	93								
2028	95								
2029	97								
2030	99								
2031	101								
2032	103								
2033	105								

En la tabla 7.9 se presenta la evolución de la producción de energía, así como la participación estimada que corresponde a fuentes de generación limpias.

TABLA 7.9 PARTICIPACIÓN DE ENERGÍA LIMPIA EN EL SISTEMA ELÉCTRICO NACIONAL

Periodo	Energía Producida (GWh)	Energía Limpia (GWh)	Energía Limpia (%)
2019	327,965	87,400	26,6
2020	340,162	107,374	31.6
2021	350,432	117,236	33.5
2022	362,099	118,521	32.7
2023	368,365	123,350	33.5
2024	379,159	133,175	35.1
2025	389,998	137,815	35.3
2026	401,262	144,055	35.9
2027	412,482	150,361	36.5
2028	424,801	157,258	37.0
2029	437,448	164,548	37.6
2030	450,036	171,821	38.2
2031	462,739	179,141	38.7
2032	476,606	187,242	39.3
2033	490,047	195,316	39.9

VIII. Programa de Ampliación y Modernización de la Red Nacional de Transmisión y Redes Generales de Distribución del Mercado Eléctrico Mayorista.

PRODESEN 2019-2033

VIII. PROGRAMA DE AMPLIACIÓN Y MODERNIZACIÓN DE LA RED NACIONAL DE TRANSMISIÓN Y LAS REDES GENERALES DE DISTRIBUCIÓN DEL MERCADO ELÉCTRICO MAYORISTA (PAMRNT)

VIII.1 Objetivo de los Proyectos de Ampliación y Modernización

--- I Programa de Ampliación y Modernización de la Red Nacional de Transmisión y Redes Generales de Distribución del Mercado Eléctrico Mayorista, se llevará a cabo sobre la base del mandato constitucional de los artículos 25 y 27, "Tratándose de la planeación y el control del Sistema Eléctrico Nacional, y del servicio público de transmisión y distribución de energía eléctrica"; "Corresponde exclusivamente a la Nación la planeación y el control del Sistema Eléctrico Nacional, así como el servicio público de transmisión y distribución de energía eléctrica; en estas actividades no se otorgarán concesiones, sin perjuicio de que el Estado pueda celebrar contratos con particulares en los términos que establezcan las leyes, mismas que determinarán la forma en que los particulares podrán participar en las demás actividades de la industria eléctrica"; y el Transitorio 8vo. del Decreto por el que se reforman y adicionan diversas disposiciones de la Constitución Política de los Estados Unidos Mexicanos, en materia de energía: "Octavo. Derivado de su carácter estratégico, las actividades de exploración y extracción del petróleo y de los demás hidrocarburos, así como el servicio público de transmisión y distribución de energía eléctrica, a que se refiere el presente Decreto se consideran de interés social y orden público, por lo que tendrán preferencia sobre cualquier otra que implique el aprovechamiento de la superficie y del subsuelo de los terrenos afectos a aquellas".

Las propuestas de proyectos de Ampliación de la Red Nacional de Transmisión (RNT) y las Redes Generales de Distribución (RGD) del Mercado Eléctrico Mayorista (MEM) se realizan, buscando cumplir con los criterios establecidos en la ley en relación con la RNT y las RGD, cuyos objetivos son los siguientes:

- 1. Satisfacer el suministro de la demanda de energía eléctrica.
- 2. Preservar y mejorar la Confiabilidad del Sistema Eléctrico Nacional.
- 3. Reducir los costos del suministro de energía eléctrica.
- 4. Contribuir al cumplimiento de las metas de producción de energía limpia
- 5. Operar con eficiencia energética, minimizando las congestiones en la red de transmisión y las pérdidas de energía eléctrica.
- 6. Incorporar tecnologías de Redes Eléctricas Inteligentes.

Cabe señalar, que como se señaló en el apartado sobre los resultados de la reforma energética en el sector eléctrico, existe una desconexión de la planeación de las redes, con las Centrales Eléctricas, impidiendo una planeación integral del Sistema Eléctrico Nacional, esto como resultado de una separación institucional con facultades simultáneas; que actúan de manera autónoma y sin perspectiva integral, entre demanda y oferta de generación, creando condiciones ruinosas para la operación del CENACE, el uso óptimo de la infraestructura de generación y el funcionamiento del sistema.

VIII.2 Proceso de Ampliación de la RNT y las RGD del MEM

Tomando en cuenta lo expuesto como condiciones generales limitantes de la planeación de la RNT, en este PRODESEN se consideran fundamentalmente las demandas regionales, la Confiabilidad, Calidad y seguridad del sistema, con una visión que corresponde a la nueva política energética nacional.

El proceso de planeación de la RNT y las RGD del MEM inicia con el diagnóstico operativo del SEN del año previo, identificando las problemáticas que se presentaron en cada Gerencia de Control Regional; como son la saturación de la red de transmisión, sobrecarga en bancos de transformación, bajas y altas tensiones, interrupciones en el suministro de

energía eléctrica por congestión, comportamiento de la generación hidráulica y del margen de reserva operativo.

Posteriormente, se lleva a cabo la formación de los casos base para estudios de confiabilidad, para el corto y mediano plazo, los cuales deberán contener: i) el modelo de la red completa del SEN, incluyendo parámetros eléctricos y capacidades de cada elemento, ii) los proyectos de Centrales Eléctricas definidos en el Programa Indicativo para la Instalación y Retiro de Centrales Eléctricas (PIIRCE), iii) los proyectos de la RNT y las RGD del MEM que se encuentran programados, considerando las fechas factibles reportadas por los encargados de la construcción de estas obras, iv) el pronóstico de demanda y consumo que elabora el CENACE y v) la estadística de falla en elementos de generación, transmisión y transformación para los análisis probabilísticos.

Antes de realizar los estudios se analizan escenarios estacionales de la demanda, en los que se plasman las condiciones esperadas y restricciones operativas que tienen implicación sistemática en cada año o para algún periodo en particular. Por ejemplo, el uso primario del agua para la agricultura, estrategias de turbinados de algunas centrales hidroeléctricas para minimizar efectos de inundación en poblaciones, pronósticos de disponibilidad de moléculas del gas natural y unidades de Centrales Eléctricas necesarias por confiabilidad, degradaciones cíclicas en la capacidad de generación de algunas unidades por altas temperaturas ambientales y bajos niveles de almacenamiento en los grandes embalses, así como, estimaciones de generación limpia intermitente solar y eólica de acuerdo con las estadísticas disponibles para las diferentes regiones del país.

Una vez integrados los casos base al corto y mediano plazo, se realizan estudios electrotécnicos de flujos de potencia, flujos óptimos, estabilidad de voltaje, estabilidad transitoria y corto circuito a fin de
evaluar el comportamiento de la red ante distintos
escenarios de operación, conjugando las distintas
combinaciones de carga y generación que resultarían más estresantes para el sistema y que, por
ende, ocasionarían algún incumplimiento de los
objetivos anteriormente descritos y de los criterios
indicados en el capítulo 3 del Manual Regulatorio
de Planeación del Sistema Eléctrico Nacional incluido en el Código de Red.

Posteriormente, ya que se han analizado los resultados del comportamiento de la red antes las condiciones descritas previamente, se identifican y analizan alternativas de refuerzos en la red tanto en estado estable como ante contingencias sencillas (Criterio n-1). Para cada propuesta realizada se consideran cuando menos dos alternativas que sean técnicamente equivalentes y que resuelvan la misma problemática.

Después de definir las alternativas de solución, se lleva a cabo una evaluación económica que permite cuantificar el beneficio de cada proyecto de la RNT y las RGD del MEM en términos de valor agregado para la sociedad, mediante indicadores económicos de rentabilidad que determinan si los beneficios al incluir un proyecto son suficientes para cubrir los costos de inversión y operación necesarios para su realización.

Para determinar la solución más efectiva desde el punto de vista económico, dependiendo del tipo de proyecto identificado, se utilizan los siguientes modelos:

- 1. Modelo simplificado del SEN en 53 regiones con un análisis determinístico para evaluar proyectos de líneas de transmisión entre Regiones de Transmisión con impacto entre regiones y/o Gerencias de Control Regional en donde los beneficios del proyecto permiten aumentar la capacidad de transmisión entre regiones, reducir costos de producción, incrementar la flexibilidad operativa del sistema, permitir la integración de nuevas fuentes de generación, principalmente renovables y la reducción de emisiones contaminantes.
- 2. Modelo de Corriente Directa completo del Sistema de cada Gerencia de Control Regional en estudio con un análisis probabilístico para evaluar proyectos de transformación, compensación de potencia reactiva y líneas de transmisión donde los beneficios del proyecto tienen un impacto local y/o regional en donde la incidencia de falla en la red eléctrica puede ser relevante para el sistema.

Modelo completo de red en la zona de estudio con un análisis de demanda incremental para evaluar proyectos de transformación, compensación de potencia reactiva y líneas de transmisión donde los beneficios del proyecto tienen un impacto local al permitir atender el crecimiento pronosticado de la demanda.

En el largo plazo, se identifican refuerzos indicativos de transmisión y compensación que se verifican anualmente conforme se actualiza el PIIRCE, el pronóstico de crecimiento de la demanda y la evolución de precios de los combustibles.

VIII.3 Proceso de Modernización de la RNT y las RGD del MEM

El proceso de modernización de la RNT y las RGD del MEM se realiza por el transportista y el distribuidor en coordinación con el CENACE. En un primer paso se llevan a cabo estudios de confiabilidad y estadísticos para evaluar las condiciones actuales de los equipos y elementos que conforman el sistema eléctrico nacional.

Posteriormente, se identifican las necesidades del requerimiento de inversión, tomando en cuenta que la definición de Modernización corresponde a "toda sustitución de equipo o elementos existentes motivada por el término de su vida útil, imposibilidad para integrarse a nuevas tecnologías, incumplimiento de requerimientos mínimos de seguridad en su operación, escalar especificaciones de instalaciones no acordes a su entorno".

Bajo esta premisa y tomando en cuenta las necesidades más comunes de modernización, se identifican los siguientes casos:

a. Proyectos motivados por la violación de capacidades interruptivas en interruptores y/o equipamiento serie asociado. Se

¹ RESOLUCIÓN por la que la Comisión Reguladora de Energía expide las Disposiciones Administrativas de carácter general que contienen los criterios de eficiencia, calidad, confiabilidad, continuidad, seguridad y sustentabilidad del Sistema Eléctrico Nacional: Código de Red. C. Glosario. En línea: https://www.cenace.gob.mx/Docs/MarcoRegulatorio/AcuerdosCRE/Resoluci%C3%B3n%20151%202016%20C%C3%B3digo%20 de%20Red%20DOF%202016%2004%2008.pdf

presenta cuando el nivel de cortocircuito de determinada zona o región supera la capacidad nominal de los equipos que operan dentro de la misma.

b. Equipo Obsoleto (por vida útil o refaccionamiento). Se considera obsoleto un equipo cuando existen complicaciones o imposibilidad de mantenimiento regular por falta de proveedores o por descontinuación del equipo. Adicionalmente, se pueden incluir en este rubro los proyectos en los que en una comparación económica resulte que es más costoso dar mantenimiento al equipo que reemplazarlo. En caso de llegar al término de su vida útil, se respalda con estudios concretos que la remanencia de vida útil

- c. Equipo con Daño. Aplica cuando un equipo sufre daño y no puede ser reparado; o bien, que en el largo plazo su reparación resulte más costosa que la adquisición de un equipo nuevo.
- d. Cambio de arreglo de la subestación eléctrica o reconfiguración de la topología. Procede cuando se observan beneficios en la confiabilidad, ya sea ante fallas o para dar flexibilidad y reducir tiempos de mantenimientos.
- e. Cambio de Equipo por imposibilidad tecnológica. Se establecen cambios de este tipo cuando la tecnología del equipo ya no es compatible con el resto de la subestación o cuando el fabricante informa que ya no proveerá garantías y/o soporte.
- f. Escalar especificaciones no acordes a su entorno. Son motivados por tener equipos de menor capacidad en un entorno que se encuentre subutilizado.

VIII.4 Propuestas de Ampliación de la RNT y las RGD del MEM.

cional de Transmisión en el PAMRNT, ordenados por prioridad.

En la tabla 8.1 se presenta un resumen de los proyectos identificados de ampliación en la Red Na-

TABLA 8.1. PROYECTOS IDENTIFICADOS DE AMPLIACIÓN DE LA RNT EN EL PAMRNT 2019 - 2033

Prioridad	Gerencia de Control Regional	PEM	Proyecto	Fecha Necesaria	Ejercicio de Planeación en el que se identifica	Atiende problemáticas de suministro de energía eléctrica en Zona o GCR/ Estado
1	Peninsular	P18-PE2	Aumento de capacidad de transmisión para atender el crecimiento de la demanda de las zonas Cancún y Riviera Maya	abr-20	2018	Cancún y Riviera Maya / Quintana Roo
2	Occidental	P19-OC4	Compensación de potencia reactiva dinámica en el Bajío	abr-25	2019	Bajío / Guanajuato y Querétaro
3	Central, Occidental, Noreste	119-CE1	Incremento en la capacidad de transmisión de la región Noreste al Centro del País	abr-25	2019	Occidental / Querétaro, Estado de México, Hidalgo y Ciudad de
4	Oriental y Peninsular	PI7-PEI	Interconexión Sureste - Peninsular	abr-22	2017	Gerencias de Control Oriental y Peninsular / Tabasco, Campeche, Yucatán y Quintana Roo
5	Noreste	P19-NE2	Reducción en el nivel de cortocircuito de la red eléctrica de la Zona Metropolitana de Monterrey	abr-21	2019	Monterrey / Nuevo León
6	Noroeste	P19-NO2	Solución a las restricciones de capacidad de transmisión en cables subterráneos del Noroeste	abr-19	2019	Nogales, Hermosillo, Obregón, Los Mochis, Culiacán y Mazatlán / Sonora y Sinaloa
7	Noroeste	P15-NO1	Culiacán Poniente entronque Choacahui – La Higuera (A3N40)	abr-20	2015	Culiacán / Sinaloa
8	Noreste	P18-NE2	Derramadero entronque Ramos Arizpe Potencia - Salero	abr-19	2018	Saltillo / Coahuila
9	Noreste	P18-NE3	San Jerónimo Potencia Banco 2	abr-23	2018	Monterrey / Nuevo León
10	Baja California	P19-BC1	Tijuana I Banco 4	abr-23	2019	Tijuana / Baja California
11	Norte	P19-NT1	Terranova Banco 2	abr-23	2019	Ciudad Juárez / Chihuahua
12	Occidental	P19-OC2	San José Iturbide Banco 4	abr-23	2019	San Luis de la Paz / Guanajuato y Querétaro
13	Oriental	P19-OR3	Suministro de energía en la Zona Huatulco y Costa Chica	jun-19	2019	Huatulco, Oaxaca, Acapulco / Oaxaca y Guerrero
14	Occidental	P19-OC3	Incremento de capacidad de transmisión en Las Delicias - Querétaro	abr-23	2019	Querétaro / Querétaro y Guanajuato
15	Noreste	P19-NE1	Ampliación de la red eléctrica de 115 kV del corredor Tecnológico-Lajas	abr-18	2019	Montemorelos y Linares / Nuevo León
16	Noroeste	P16-NO1	El Mayo entronque Navojoa Industrial - El Carrizo	abr-20	2016	Navojoa / Sonora
17	Oriental	P19-OR2	Puebla Dos Mil entronque Puebla II 73890 Guadalupe Analco	jun-19	2019	Puebla / Puebla
18	Noroeste	P19-NO1	Viñedos MVAr	abr-20	2019	Hermosillo / Sonora

En la Tabla 8.2 se muestran los proyectos de modernización identificados por CFE Transmisión, en el PAMRNT.

TABLA 8.2. PROYECTOS IDENTIFICADOS DE MODERNIZACIÓN DE LA RNT EN EL PAMRNT 2019 - 2033

Nombre del Proyecto	Gerencia Regional de Transmisión CFE	Fecha Necesaria	Fecha Factible	Criterio Aplicable	Descripción del proyecto
Sustitución de Transformadores de Potencia en la subestación eléctrica Poza Rica	Oriente	dic-18	dic-22	b	Reemplazo de transformadores de Potencia debido a su condición de antiguedad
Modernización de tres cuadros de Maniobras para incorporar interruptores	Norte	abr-19	dic-20	ď	Instalación de 5 interruptores en 115 kV en subestaciones operadas con cuchillas
Reemplazo de equipo con baja capacidad de corto circuito (KA) (en zonas Juárez y Torreón)	Norte	ene-19	dic-21	a	Sustitución de equipo eléctrico primario, el cual rebasó su capacidad de corto circuito en las subestaciones Valle de Juárez, Francke, Torreón Sur, Laguna, Laguna Dos y Sacramento
Modernización de Arregio de Barras en 230 kV de la subestación eléctrica Tecnológico	Baja California	ene-19	abr-21	d	Se propone la modernización del arregio en 230 kV en la SE Tecnológico para operar a Barra Principal y Barra Auxiliar, para dar mayor confiabilidad al área oriente de la Ciudad de Mexicali.
Modernización de enlaces de transmisión requeridos para incrementar capacidad de líneas de transmisión limitadas por equipo serie	Varias	Varias	Varias	f	Reemplazo de equipo eléctrico para eliminar restricciones de capacidad en líneas transmisión por equipo serie.
Modernización de red eléctrica asociada a Humeros	Oriente	jun-22	jun-22	b	Reemplazo de 16 km de línea de transmisión en 115 kV debido a su antigüedad

Categorías aplicables

- a. Proyectos motivados por la Violación de Capacidades Interruptivas de Interruptores en AT y/o Equipamiento serie asociado.
- b. Equipo Obsoleto (por vida útil o refaccionamiento).
- c. Equipo con Daño.
- d. Cambio de arreglo de SE o reconfiguración de la topología,
- e. Cambio de Equipo por imposibilidad tecnológica.
- f. Escalar especificaciones no acordes a su entorno.

En la Tabla 8.3 se muestran los proyectos de modernización identificados por CFE Transmisión, en el PAMRNT.

TABLA 8.3. PROYECTOS IDENTIFICADOS DE AMPLIACIÓN DE LAS RGD DEL MEM EN EL PAMRNT 2019–2033

Gerencia de Control Regional	РЕМ	Proyecto	Fecha Necesaria	Atiende problemáticas de suministro de energía eléctrica en Zona de Distribución / Estado
	D19-OR1	Tihuatlán II Banco 1 (sustitución)	dic-22	Poza Rica / Veracruz
	D19-OR2	Tepeyac Banco 2	dic-22	Poza Rica / Veracruz
	D19-OR3	Zapata Oriente Banco 1	dic-23	Los Ríos / Tabasco
Oriental	D19-OR4	Perote II Banco 1 (sustitución)	dic-22	Teziutlán / Puebla
	D19-OR5	Simojovel Banco 2	dic-22	Villahermosa / Tabasco
	D19-OR6	Paso del Toro Banco 2 (sustitución)	dic-22	Veracruz / Veracruz
	D19-OR7	Nanchital II Banco 2 (sustitución)	dic-22	Coatzacoalcos/Veracruz
	D19-OC1	Jauja Banco 1	nov-23	Tepic /Nayarit
	D19-OC2	Centro Banco 1	dic-23	Vallarta / Jalisco
	D19-OC4	Acatic Banco 1	abr-23	Los Altos / Jalisco
	D19-OC5	Tolimán Banco 1	jun-23	Zapotlán / Jalisco
Occidental	D19-OC6	Tapalpa Banco 1	abr-23	Zapotlán / Jalisco
Occidental	D19-OC10	Soledad de Graciano Sánchez Banco 2	ene-22	San Luis Potosí / San Luis Potosí
	D19-OC11	Cortázar Banco 2	dic-23	Celaya / Guanajuato
	D19-OC12	Morelos Banco 1	jun-22	León / Guanajuato
	D19-OC13	Querétaro Poniente Banco 2	dic-22	Querétaro / Querétaro
	D19-OC14	San Carlos Banco 2	dic-23	León / Guanajuato
	D19-NO1	Choacahui Banco 1	may-23	Los Mochis / Sinaloa
	D19-NO2	Maniobras Munisol Banco 1	may-22	Hermosillo / Sonora
Noroeste	D19-NO3	Santa Fe Banco 1	abr-23	Culiacán / Sinaloa
	D19-NO4	Tamazula Banco 1	may-23	Guasave / Sinaloa
	D19-NO5	Terramara Banco 1	may-23	Hermosillo / Sonora
	D19-NT1	Nuevo Ideal Banco 1 (sustitución)	abr-23	Durango / Durango
Norte	D19-NT2	Canatlán II Banco 1 (sustitución)	abr-22	Durango / Durango
	D19-NT3	Guadiana Bancos 1 y 2 (sustitución)	abr-22	Durango / Durango
	D19-NE1	Valle Alto Banco 1 (sustitución)	jun-22	Valles / San Luis Potosí
Noreste	D19-NE2	San Bartolo Banco 1	jun-23	Huejutla / Hidalgo
	D19-NE3	Tambaca Banco I (sustitución)	jun-23	Río Verde / San Luis Potosí
	D19-BC1	Libramiento Banco 1	abr-22	San Luis Río Colorado / Sonora
Baja California	D19-BC2	González Ortega Banco 3	abr-23	Mexicali / Baja California
	D19-BS1	Cabo Falso Banco 2	jun-22	Los Cabos / Baja California Sur

A continuación, se hace una breve reseña de cada uno de los proyectos identificados de ampliación y modernización de la RNT y las RGD del MEM, incluyendo las metas físicas de la infraestructura, los beneficios esperados del proyecto, su fecha estimada de entrada en operación y su área de influencia.

Las metas físicas de la infraestructura pudieran modificarse debido a la factibilidad constructiva,

así como de la viabilidad de la obtención de los derechos de vía e inmobiliarios, permisos ambientales y arqueológicos, entre otros. Aunque pudiesen presentarse ajustes en los mismos, siempre se busca lograr el objetivo planteado para cada uno de ellos. En la sección siguiente, se describe un conjunto de propuestas de proyectos de infraestructura identificados en el contexto señalado al inicio de este programa, en relación a la ausencia de una planeación

integral del Sistema Eléctrico Nacional, por lo que deberán ser revisados en el marco integral de la política energética y el desarrollo del propio sistema.

Cabe señalar que en el pasado reciente se ha observado un déficit de inversión y que algunos de los proyectos tienen un carácter de urgente para atender la demanda.

La autorización de las inversiones será contingente de la disponibilidad de los recursos necesarios, atendiendo prioritariamente los proyectos que están relacionados con el suministro de la demanda y la Confiabilidad del sistema. Los generadores deberán cubrir los costos correspondientes a la transmisión de potencia.

P18-PE2 AUMENTO DE CAPACIDAD DE TRANSMISIÓN PARA ATENDER EL CRECIMIENTO DE LA DEMANDA DE LAS ZONAS CANCÚN Y RIVIERA MAYA

Infraestructura Propuesta y metas físicas

- Nueva SE Kantenáh con un banco de transformación de 375 MVA y relación de transformación 400/115 kV (incluye fase de reserva).
- Entronque de la LT Dzitnup A3Q70 Riviera Maya en la SE Kantenáh con una longitud de 22 en 400 kV.
- Entronque de la LT Playa del Carmen 73790 Aventura Palace en la SE Kantenáh con una longitud de 11 km en 115 kV.
- Entronque de la LT Playa del Carmen 73R60 Aktun-Chen en la SE Kantenáh con una longitud de 11 km en 115 kV.
- Entronque de la LT Aventura Palace Punto de Inflexión Aktun-Chen en la SE Aktun-Chen con una longitud de 0.1 km en 115 kV.
- Una nueva línea de transmisión entre las SE Aktun-Chen y Aventura Palace con una longitud de 1.4 km en 115 kV.
- · Reemplazo de la línea de transmisión Aktun-Chen Akumal II de un circuito por línea de

transmisión de doble circuito con una longitud de 82 en 115 kV

- · Alimentadores para la conexión de las nuevas líneas y equipos en subestaciones eléctricas.
- Dos condensadores síncronos con capacidad de ±250 MVAr, cada uno, en las SE Kantenáh y Balam en 400 kV y 115 kV, respectivamente.
- Traslado de un banco de reactores con capacidad de 50 MVAr (incluye fase de reserva) de la SE Riviera Maya a la SE Kantenáh en 400 kV.
- · Cambio de transformador de corriente en la SE Puerto Morelos.

Tipo de Obra	kV	km-c	MVA	MVAr	Alim.
Transmisión	400	44.0	8.5		150
Transmision	115	61.9			
Transformación	400/115	¥	500.0	-	-
Campananida	400	-	(*)	566.6	*
Compensación	115	75	(e.	500.0	150
Alimentadores	400				2
Allmentadores	115	Œ.	(2)	-	8
Total		105.9	500.0	1,066.6	10

Beneficios del proyecto

El proyecto aumentará la capacidad de transmisión entre la región de Valladolid hacia Cancún y Rivera Maya, mejora la Calidad, Confiabilidad y Continuidad del suministro de la demanda, así como, la incorporación de nuevos Centros de Carga, mejorando las condiciones económicas del estado de Quintana Roo.

Fecha Factible de Entrada en Operación

Área de Influencia del Proyecto

Abril de 2023

Cancún y Riviera Maya, Quintana Roo

P19-0C4

COMPENSACIÓN DE POTENCIA REACTIVA DINÁMICA EN EL BAJÍO

Infraestructura Propuesta y metas físicas

- · Instalación de dos compensadores estáticos de VAr (CEV) en la SE Potrerillos y la SE Querétaro Potencia, ambos en el nivel de 230 kV y de una capacidad de 300 MVAr capacitivos y 90 MVAr inductivos.
- · Instalación de tres bancos de capacitores fijos en subestaciones eléctricas de 115 kV: Potrerillos (45 MVAr), Santa Fe (45 MVAr) y El Marqués (30 MVAr).

Tipo de Obra	kV	MVAr
Compensación	230	780
Compensacion	115	120
Total	-	900

Beneficios del proyecto

Mejorar la Calidad y Confiabilidad del suministro de la demanda de la región del Bajío, incrementa la capacidad de transmisión en los corredores: León – Salamanca, Querétaro – Celaya y Las Mesas – Querétaro, la reducción de pérdidas I²R y permite la incorporación de nuevos Centros de Carga, mejorando las condiciones económicas de los estados de Guanajuato y Querétaro.

Fecha Factible de Entrada en Operación

Área de Influencia del Proyecto

Abril de 2025

Región Bajío: Estados de Guanajuato y Querétaro

119-CE1

INCREMENTO EN LA CAPACIDAD DE TRANSMISIÓN DE LA REGIÓN NORESTE AL CENTRO DEL PAÍS

Infraestructura Propuesta y metas físicas

- · Línea de transmisión Las Mesas (Tamazunchale) – Jilotepec Potencia de doble circuito en 400 kV, con una longitud aproximada de 213 km.
- Entronque de la subestación eléctrica Jilotepec Potencia en la línea de transmisión Nopala - Victoria en 400 kV, con una longitud aproximada de 95 km.
- · Dos bancos de transformación de 375 MVA (incluye fase de reserva) y relación de transformación 400/230 kV en la subestación eléctrica Jilotepec Potencia.
- · Red asociada en 230 KV que interconecta las subestaciones eléctricas Jilotepec Potencia, La Manga, El Vidrio, Valle de México y Héroes de Carranza.
- Dos reactores de línea de 75 MVAr de capacidad y dos de bus de 50 MVAr en la subestación eléctrica Jilotepec Potencia.

· Alimentadores en 400 y 230 kV para interconectar las subestaciones eléctricas asociadas, así como cambio de transformadores de corriente para incremento en capacidad.

Debido a la complejidad que representa el área metropolitana de la cd. de México, la infraestructura propuesta está sujeta a cambios que dependerán de las evaluaciones de Impacto Social, adquisición de los derechos Inmobiliarios y compra de terrenos, así como la manifestación de impacto ambiental.

Tipo de Obra	kV	km-c	MVA	MVAr	Alim.
Transmisión	400	616.0	.2	-	•
Transmision	230	49.0	-	-	-
Transformación	400/230	-	875.0	-	-
Compensación	400	-	-	275.0	•
	400	(+)	(*)		6
Alimentadores	230			-	6
Total	(2)	665.0	875.0	291.6	14

Beneficios del proyecto

El proyecto incrementa la capacidad de transmisión desde la Gerencia de Control Regional Noreste hacia el Centro-Occidente de país, mejora la Calidad y Confiabilidad del suministro de la demanda, así como, la incorporación de nuevos Centros de Carga (industrial, agrícola, residencial y comercial), mejorando las condiciones económicas de los estados de Querétaro, Estado de México, Hidalgo y Ciudad de México.

La redistribución de flujo de potencia activa en la red troncal de 400 kV provocará una reducción considerable de pérdidas l²R que se traduce en un menor costo operativo del sistema eléctrico.

Fecha Factible de Entrada en Operación

Área de Influencia del Proyecto

Abril de 2025

Querétaro, Estado de México, Hidalgo y Ciudad de México

P17-PE1

INTERCONEXIÓN SURESTE - PENINSULAR

Infraestructura Propuesta y metas físicas

- · Nueva SE Tecpatán con los entronques de las LT Malpaso II-A3050-Chicoasén II y Manuel Moreno Torres-A3040-Juile y traslado de reactor de 100 MVA de la SE Manuel Moreno Torres a la SE Tecpatán.
- · Doble circuito entre las SE Tecpatán, Tabasco Potencia, Escárcega Potencia, Ticul Potencia, Dzitnup y Kantenáh en 400 kV, 947.7 km de longitud, así como su compensación de potencia reactiva para cada tramo de línea
- Entronque de la LT Dzitnup-A3Q60-Riviera Maya en la SE Kantenáh y traslado de reactor de 50 MVA de la SE Riviera Maya a la SE Kantenáh.
- Nueva SE Leona Vicario con un banco de transformación de 375 MVA y relación de transformación 400/115 kV (incluye fase de reserva).
- Tendido del primer circuito entre las SE Kantenáh y Leona Vicario de aproximadamente 71 km en 400 kV.
- Red asociada en 115 kV en la Zona Cancún que consiste en las LT Leona Vicario Kekén, Leona Vicario Yaxché y Leona Vicario Kohunlich.
- Un condensador síncrono con capacidad de ±250 MVAr, en la SE Kantenáh en 400 kV.

- CEV con capacidad de +100/0 MVAr en la SE Los Ríos en 115 kV.
- Compensador estático síncrono (STATCOM) con capacidad de ±300 MVAr en la SE Tabasco Potencia en 400 kV.
- STATCOM con capacidad de ±300 MVAr en la SE Ticul Potencia en 400 kV.
- · Compensación capacitiva de 7.5 MVAr en cada una de las SE Tenosique y Tabasquillo.

Tipo de Obra	kV	km-c	MVA	MVAr	Alim.
Transmisión	400	2,016.40	-	-	-
Halisillision	115	39.8	-	-	-
Transformación	400/115	-	500	-	-
Compensación	400	-	-	3,275.00	-
	115	-	-	115	-
Alimentadores	400	-	-	-	28
Allmentadores	115	-	-	-	8
Total	-	2,056.20	500	3,390.00	36

Aún continúan en estudio alternativas adicionales para atender el crecimiento de la demanda de la Península de Yucatán, las cuales podrían modificar el alcance de este proyecto. La infraestructura propuesta está sujeta a cambios que dependerán de las evaluaciones de Impacto Social, adquisición de los derechos Inmobiliarios y compra de terrenos, así como la manifestación de impacto ambiental.

Beneficios del proyecto

El proyecto mejora la Calidad y Confiabilidad, y permite la incorporación de nuevos Centros de Carga (industrial, turístico, agrícola, residencial y comercial), mejorando las condiciones económicas del estado de Tabasco y la Península de Yucatán.

Además, se reducirán los costos de producción en esta región del país ya que se tendrá una mayor capacidad para transmisión de energía desde hidroeléctrica de las Centrales Eléctricas del Grijalva y eólica del Istmo de Tehuantepec.

Fecha Factible de Entrada en Operación

Área de Influencia del Proyecto

Abril de 2025

Chiapas, Tabasco, Campeche, Yucatán y Quintana Roo

P19-NE2 REDUCCIÓN EN EL NIVEL DE CORTOCIRCUITO DE LA RED ELÉCTRICA DE LA ZONA METROPOLITANA DE MONTERREY

Infraestructura Propuesta y metas físicas

- Un nuevo banco de transformación con relación 400/115 kV de 375 MVA de capacidad nominal, en la SE Domingo Nuevo (incluye fase de reserva).
- Red de transmisión en 400 kV y 115 kV para la conexión del banco en la SE Santo Domingo (incluye dos alimentadores en 400 y cuatro en 115 kV para la conexión de las líneas nuevas).
- · Cambio de cinco juegos de transformadores de corriente (TC) en líneas de 115 kV.
- Tipo de Obra
 kV
 km-c
 MVA
 Alim.

 Transmisión
 400
 0.4

 115
 12.4

 Transformación
 400/115
 500

 Alimentadores
 400
 2

 115
 37

 Total
 12.8
 500
 39

· Sustitución de 33 alimentadores en 115 kV.

Beneficios del proyecto

El proyecto mejora la Confiabilidad de la red eléctrica y permite la incorporación de nuevos Centros de Carga (industrial, residencial y comercial), mejorando las condiciones económicas de la Zona Metropolitana de Monterrey.

Fecha Factible de Entrada en Operación

Área de Influencia del Proyecto

Abril de 2024

Ciudad de Monterrey, Nuevo León.

P19-NO2 SOLUCIÓN A LA CAPACIDAD DE TRANSMISIÓN DE LÍNEAS SUBTERRÁNEAS QUE PRESEN-TAN SOBRECARGAS EN EL ÁMBITO DE LA GERENCIA DE CONTROL REGIONAL NOROESTE

Infraestructura Propuesta y metas físicas

· Construcción y puesta en operación de 121.6 km-c de línea de transmisión subterránea en el nivel de 115 kV en diversos tramos de líneas de transmisión que operan en 115 kV de las zonas Nogales, Hermosillo, Obregón, Los Mochis, Culiacán y Mazatlán en la GCR Noroeste.

Tipo de Obra	kV	km-c
Transmisión	115	121.6
Total	-	121.6

Beneficios del proyecto

Este proyecto mejora la Confiabilidad, incrementa la capacidad de transmisión y permite la incorporación de nuevos Centros de Carga (industrial, agrícola, turístico, residencial y comercial), mejorando las condiciones económicas de las zonas Nogales, Hermosillo, Obregón, Los Mochis, Culiacán y Mazatlán.

Fecha Factible de Entrada en Operación

Área de Influencia del Proyecto

Abril de 2023

Nogales, Hermosillo, Obregón en Sonora y Los Mochis, Culiacán y Mazatlán en Sinaloa

P15-NO1

CULIACÁN PONIENTE ENTRONQUE CHOACAHUI - LA HIGUERA (A3N40)

Infraestructura Propuesta y metas físicas

- · Línea de transmisión Culiacán Poniente entronque Choacahui La Higuera, con una longitud aproximada de 0.8 km-c en 400 kV.
- · Dos alimentadores en 400 kV en la subestación eléctrica Culiacán Poniente.

Tipo de Obra	kV	km-c	Alim.
Transmisión	400	0.4	-
Alimentadores	400	-	2
Total	-	0.4	2

Beneficios del proyecto

El proyecto incrementa la capacidad de transmisión entre la región de Los Mochis y Culiacán, mejora la Confiabilidad del suministro de la demanda y la incorporación de nuevos Centros de Carga (industrial, agrícola, turístico, residencial y comercial), mejorando las condiciones económicas de las zonas de Los Mochis, Culiacán y Mazatlán.

Fecha Factible de Entrada en Operación

Área de Influencia del Proyecto

Abril de 2023

Culiacán, Sinaloa

P18-NE2

DERRAMADERO ENTRONQUE RAMOS ARIZPE POTENCIA - SALERO

Infraestructura Propuesta y metas físicas

- Línea de transmisión en 400 kV de doble circuito con una longitud de 3.2 km, aproximadamente, para realizar entronque de la línea Ramos Arizpe Potencia Salero en la SE Derramadero.
- Traslado de un banco de reactores en 400 kV con capacidad de 75 MVAr (incluye fase de reserva), de la SE Ramos Arizpe Potencia hacia la SE Derramadero.
- · Dos alimentadores en la subestación eléctrica Derramadero en 400 kV.

Tipo de Obra	kV	km-c	MVAr	Alim.
Transmisión	400	6.4	-	-
Compensación	400	-	75	-
Alimentadores	400	-	-	2
Total	-	6.4	75	2

Beneficios del proyecto

Este proyecto incrementa la capacidad de transmisión entre las regiones de Saltillo y Aguascalientes. Mantiene y mejora la Confiabilidad al suministro de la demanda, así como, la incorporación de nuevos Centros de Carga (industrial, residencial y comercial), mejorando las condiciones económicas de la región de Saltillo.

Fecha Factible de Entrada en Operación

Área de Influencia del Proyecto

Abril de 2023

Ciudad de Saltillo, Coahuila

P18-NE3

SAN JERÓNIMO POTENCIA BANCO 2

Infraestructura Propuesta y metas físicas

• Un nuevo banco de transformación con relación 400/115 kV de 375 MVA de capacidad nominal en la SE San Jerónimo Potencia (no se incluye fase de reserva).

Tipo de Obra	kV	MVA
Transformación	400/115	375
Total	-	375

Beneficios del proyecto

Mantener y mejorar la Confiabilidad y Continuidad al suministro de la demanda, así como, la incorporación de nuevos Centros de Carga (industrial, residencial y comercial), mejorando las condiciones económicas de la Zona Metropolitana de Monterrey.

Fecha Factible de Entrada en Operación

Área de Influencia del Proyecto

Abril de 2023

Ciudad de Monterrey, Nuevo León

P19-BC1

TIJUANA I BANCO 4

Infraestructura Propuesta y metas físicas

· Nuevo banco de transformación de 225 MVA y relación de transformación 230/115/69 kV (Considera adicionalmente una fase de reserva de 75 MVA) y tendrá una operación inicial con relación 230/69 kV. Se considera la ampliación de la subestación eléctrica existente.

Tipo de Obra	kV	MVA
Transformación	230/115/69	225
Total	-	225

Beneficios del proyecto

Mantener y mejorar la Confiabilidad y Continuidad al suministro de la demanda, así como, la incorporación de nuevos Centros de Carga (industrial, residencial y comercial), mejorando las condiciones económicas del área metropolitana de Tijuana.

Fecha Factible de Entrada er	n Operacion	1
i ecila i actible de Liltiada el	II Operacioi	

Área de Influencia del Proyecto

Abril de 2023

Tijuana, Baja California.

P19-NT1

TERRANOVA BANCO 2

Infraestructura Propuesta y metas físicas

• Un banco de transformación con relación de transformación 230/115 kV de 300 MVA de capacidad nominal en la SE Terranova (no se incluye fase de reserva).

Tipo de Obra	kV	MVA
Transformación	230/115	300
Total	-	300

Beneficios del proyecto

Mantener y mejorar la Confiabilidad y Continuidad al suministro de la demanda, así como, la incorporación de nuevos Centros de Carga (industrial, residencial y comercial), mejorando las condiciones económicas del sur de ciudad Juárez

Fecha Factible de Entrada en Operación

Área de Influencia del Proyecto

Abril de 2023

Ciudad Juárez, Chihuahua,

P19-OC2

SAN JOSÉ ITURBIDE BANCO 4

Infraestructura Propuesta y metas físicas

- Un banco de transformación con relación 230/115 kV, de 300 MVA de capacidad nominal (incluye fase de reserva), ubicado en la subestación eléctrica San José Iturbide.
- · Dos líneas de transmisión en 230 kV de aproximadamente 30 km de longitud entre las subestaciones eléctricas Las Delicias y San José Iturbide.
- · Una línea de transmisión en 115 kV de aproximadamente 16 km de longitud entre las subestaciones eléctricas San José Iturbide y La Fragua; así como seis alimentadores para conectar las líneas mencionadas.

Tipo de Obra	kV	km-c	MVA	Alim.
Transmisión	230	60	-	-
Transmision	115	16	-	-
Transformación	230/115	-	300	-
Alimentadores	230	-	-	4
AlliTieritadores	115	-	-	2
Total	-	76	300	6

Beneficios del proyecto

Mantener y mejorar la Confiabilidad y Continuidad del suministro de la demanda, así como, la incorporación de nuevos Centros de Carga (industrial, agrícola, residencial y comercial), mejorando las condiciones económicas de la región de San Luis de la Paz y norte del estado de Querétaro.

Fecha Factible de Entrada en Operación

Área de Influencia del Proyecto

Abril de 2023

Región Este de Guanajuato y algunos municipios colindantes de Querétaro

P19-OR3

SUMINISTRO DE ENERGÍA EN LA ZONA HUATULCO Y COSTA CHICA

Infraestructura Propuesta y metas físicas

- Equipo de compensación dinámica STATCOM de +50/-50 MVAr en la subestación eléctrica Pochutla en 115 kV
- Equipo de compensación dinámica STATCOM de +30/-30 MVAr en la subestación eléctrica Agua Zarca en 115 kV.
- · Reemplazo de equipo terminal en las subestaciones eléctricas Pochutla, Ejutla, Juchitán II y Conejos, para el incremento en los límites de transmisión restringidos por Transformadores de Corriente (TC)

Tipo de Obra	kV	MVA
Compensación	115	160
Total	-	160

Beneficios del proyecto

El proyecto mejora significativamente la Calidad, Confiabilidad y Continuidad del suministro de la demanda, así como, la incorporación de nuevos Centros de Carga (industrial, turístico, agrícola, residencial y comercial), mejorando las condiciones económicas de las zonas Huatulco y Costa Chica.

Fecha Factible de Entrada en Operación

Área de Influencia del Proyecto

Diciembre de 2023

Estados de Oaxaca y Guerrero

P19-OC3 INCREMENTO DE CAPACIDAD DE TRANSMISIÓN EN LAS DELICIAS - QUERÉTARO

Infraestructura Propuesta y metas físicas

- · Una nueva subestación eléctrica de maniobras, denominada "Otomí", con ocho alimentadores 230 kV para la conexión de nuevas líneas de transmisión.
- · Construcción de dos líneas de transmisión en 230 kV de doble circuito para conectar la subestación eléctrica Otomí con la subestación eléctrica Las Delicias, a una distancia aproximada de 84 km.
- · Construcción de dos líneas de transmisión en 230 kV de doble circuito, con una longitud aproximada de 2.4 km, para entroncar el doble circuito Querétaro I - Querétaro Potencia.

Tipo de Obra	kV	km-c	Alim.
Transmisión	230	173.2	-
Alimentadores	230	-	8
Total	-	173.2	8

Beneficios del proyecto

El proyecto incrementa la capacidad de transmisión, mejora la Confiabilidad y Continuidad del suministro de la demanda, así como, la incorporación de nuevos Centros de Carga (industrial, agrícola, residencial y comercial), mejorando las condiciones económicas de la región de San Luis de la Paz y Querétaro. Asimismo, se tendrá mayor flexibilidad operativa para mantenimiento de la red eléctrica.

Fecha Factible de Entrada en Operación

Área de Influencia del Proyecto

Abril de 2025

Este de Guanajuato y algunos municipios colindantes de Querétaro

P16-N01

EL MAYO ENTRONQUE NAVOJOA INDUSTRIAL - EL CARRIZO

Infraestructura Propuesta y metas físicas

- Línea de transmisión El Mayo entronque Navojoa Industrial – 73600 – Carrizo con una longitud aproximada de 1.2 km-c en 115 kV.
- · Dos alimentadores para interconectar la nueva línea de transmisión.

Tipo de Obra	kV	km-c	Alim.
Transmisión	115	1.2	-
Alimentadores	115	#	2
Total	-	1.2	2

Beneficios del proyecto

El proyecto incrementa la capacidad de transmisión, mejora la Confiabilidad del suministro de la demanda, así como, la incorporación de nuevos Centros de Carga (industrial, agrícola, residencial y comercial), mejorando las condiciones económicas de las regiones de Navojoa y Los Mochis. Asimismo, se tendrá mayor flexibilidad operativa para mantenimiento de la red eléctrica.

Fecha Factible de Entrada en Operación

Área de Influencia del Proyecto

Abril de 2023

Navojoa en Sonora y Los Mochis en Sinaloa

P19-OR2

PUEBLA DOS MIL ENTRONQUE PUEBLA II 73890 GUADALUPE ANALCO

Infraestructura Propuesta y metas físicas

- Entronque de la línea de transmisión Puebla II 73890 Guadalupe Analco en la subestación eléctrica Puebla Dos Mil con una longitud aproximada de 0.2 km-c en 115 kV.
- Sustitución de Transformadores de corriente (TC) en la subestación eléctrica Puebla Dos Mil para incrementar el límite de la línea de transmisión Puebla II 73190 Puebla Dos Mil a 131 MVA (límite térmico).
- · Instalación de dos alimentadores de línea en 115 kV en la subestación eléctrica Puebla Dos Mil para la conexión de las líneas de transmisión de entronque.

Tipo de Obra	kV	km-c	Alim.
Transmisión	115	0.2	-
Alimentadores	115	-	2
Total	-	0.2	2

Beneficios del proyecto

El proyecto mejora la Calidad y Confiabilidad del suministro de la demanda, asimismo se tendrá mayor flexibilidad operativa para mantenimiento de la red eléctrica.

Fecha Factible de Entrada en Operación

Área de Influencia del Proyecto

Diciembre de 2022

Ciudad de Puebla

P19-NO1 VIÑEDOS MVAR

Infraestructura Propuesta y metas físicas

· Nuevo banco de compensación capacitiva de 22.5 MVAr en la subestación eléctrica Viñedos en 115 kV.

Tipo de Obra	kV	MVAr
Compensación	115	22.5
Total	-	22.5

Beneficios del proyecto

La obra mejora la Calidad y Confiabilidad del suministro de la demanda, así como, la incorporación de nuevos Centros de Carga.

Fecha Factible de Entrada en Operación

Área de Influencia del Proyecto

Abril de 2023

Hermosillo Sonora

M19-NT1 MODERNIZACIÓN DE CUADROS DE MANIOBRAS EN LA ZONA CASAS GRANDES

Infraestructura Propuesta y metas físicas

- · Instalación de un alimentador en 115 kV en el CM Bismark para la línea hacia la subestación eléctrica Palomas.
- · Instalación de dos alimentadores en 115 kV en el CM Galeana para seccionar la línea de transmisión Benito Juárez – 73720 – Casas
- · Instalación de dos alimentadores en 115 kV en el CM San Buenaventura para seccionar la línea de transmisión Benito Juárez 73660 Casas Grandes.

Tipo de Obra	kV	Alim.
Alimentadores	115	5
Total	-	5

Beneficios del proyecto

El proyecto mejora la Calidad, Confiabilidad y Continuidad del suministro de la demanda a los usuarios agrícolas de la región, asimismo se tendrá mayor flexibilidad operativa para mantenimiento y ante disturbios de la red eléctrica.

Fecha Factible de Entrada en Operación

Área de Influencia del Proyecto

Diciembre de 2020

Norte de Chihuahua: Municipios de Nuevo Casas Grandes y Ascensión

M19-NT2

REEMPLAZO DE EQUIPO CON CAPACIDAD LIMITADA DE CORTOCIRCUITO EN LAS ZONAS JUÁREZ Y TORREÓN

Infraestructura Propuesta y metas físicas

- Sustitución de 6 interruptores, 41 cuchillas y 12 transformadores de corriente en la SE Valle de Juárez.
- · Sustitución de 3 interruptores, 8 cuchillas y 9 transformadores de corriente en la SE Francke.
- · Sustitución de 6 interruptores, 15 cuchillas y 15 transformadores de corriente en la SE Torreón Sur
- · Sustitución de 3 interruptores la SE Laguna

- · Sustitución de 1 interruptor en la SE Sacramento
- · Sustitución de 1 interruptor, 3 cuchillas y 3 transformadores de corriente en la SE Laguna II.

Tipo de Obra	kV	Alim.
Alimentadores	115	20
Cuchillas	115	67
Transformador de Corriente	115	39
Total	-	126

Beneficios del proyecto

El proyecto mejora la Confiabilidad y Continuidad del suministro de la demanda.

Fecha Factible de Entrada en Operación

Área de Influencia del Proyecto

Diciembre de 2021

Torreón (Coahuila), Gómez Palacio (Durango) y Ciudad Juárez (Chihuahua)

M19-OR1

SUSTITUCIÓN DE TRANSFORMADORES DE POTENCIA EN LA SUBESTACIÓN ELÉCTRICA POZA RICA

Infraestructura Propuesta y metas físicas

- · Sustitución de dos autotransformadores de relación de transformación 115/69 kV.
- · Se contempla la construcción de cimentaciones para anclaje de los nuevos equipos y reforzamiento de cuadros estructurales para la conexión de los bancos de transformación con la subestación eléctrica.

Tipo de Obra	kV	MVA
Transformación	115/69	100
Total	-	100

Beneficios del proyecto

El proyecto mantiene y mejora la Confiabilidad y Continuidad del suministro de la demanda.

Fecha Factible de Entrada en Operación

Área de Influencia del Proyecto

Diciembre de 2022

Poza Rica, Veracruz

M19-BC1 MODERNIZACIÓN DE ARREGLO DE BARRAS EN 230 KV DE LA SUBESTACIÓN FI ÉCTRICA TECNOI ÓGICO

Infraestructura Propuesta y metas físicas

· Modernización de Arreglo de Barras en 230 kV para cambiar a arreglo de doble barra "bus principal y bus auxiliar" en la subestación eléctrica Tecnológico.

Tipo de Obra	kV	Barras
Modernización	230	1
Total	-	1

Beneficios del proyecto

Con el proyecto se mejora la Confiabilidad del suministro de la demanda, asimismo se tendrá mayor flexibilidad operativa para mantenimiento y ante disturbios de la red eléctrica.

Fecha Factible de Entrada en Operación

Área de Influencia del Proyecto

Abril de 2021

Mexicali, Baja California

M19-TC1 MODERNIZACIÓN DE LÍNEAS DE TRANSMISIÓN LIMITADAS EN SU CAPACIDAD POR EQUIPO SERIE

Infraestructura Propuesta y metas físicas

- · Reemplazo de 248 Transformadores de Corriente (TC)
- · Reemplazo de 10 Trampas de Onda (TO)
- · 64 recalibraciones de Buses (BU)
- · Reemplazo de 9 Cuchillas (CU)
- · Recalibración de un puente (PU)
- · Sustitución de 43 remates de línea de transmisión (RE)

Gerencia	TC	TO	BU	CU	PU	RE
Central	19	-	-	6	1	-
Oriental	27	-	4	-	-	-
Occidental	95	3	60	3	-	41
Noroeste	4	-	-	-	-	2
Norte	53	7	-	-	-	-
Noreste	46	-	-	-	-	-
Baja California	4	-	-	-	-	-
Total	248	10	64	9	1	43

Beneficios del proyecto

Con el proyecto se sustituyen equipos de la red eléctrica que limitan capacidad de elementos de transmisión en la RNT en diferentes regiones del país, permitiendo la instalación de nuevos Centros de Carga y la disminución de costos de producción al eliminar restricciones en la red eléctrica.

Fecha Factible de Entrada en Operación

Área de Influencia del Proyecto

De abril de 2020 a diciembre de 2024

Sistema Eléctrico Nacional

M19-OR2

MODERNIZACIÓN DE RED ELÉCTRICA ASOCIADA A HUMEROS

Infraestructura Propuesta y metas físicas

- Sustitución de línea de transmisión actual en 115 kV Humeros II – Teziutlán de aproximadamente 16 km de longitud.
- · Sustitución de interruptores en 115 KV.
- · Recalibración de barra de la subestación eléctrica Teziutlán

Tipo de Obra	kV	km-c	Barras	Alim
Transmisión	115	16	-	-
Modernización	115	-	1	-
Alimentadores	115	-	-	2
Total	-	16	1	2

Beneficios del proyecto

Incrementar la Confiabilidad de la red eléctrica en la zona, reducir costos de producción y reducción de emisión de contaminantes.

Fecha Factible de Entrada en Operación

Área de Influencia del Proyecto

Junio de 2022

Teziutlán, Puebla

D19-OR1

TIHUATLÁN DOS BANCO 1 (SUSTITUCIÓN)

Infraestructura Propuesta y metas físicas

- · Sustitución del banco 1 existente en la subestación eléctrica Tihuatlán Dos por un banco de 30 MVA de capacidad y relación de transformación 115/13.8 kV.
- Dos alimentadores de media tensión, 1 km de red en media tensión que servirán para crear nuevas trayectorias y respaldar los circuitos actuales.
- Instalación de un banco de capacitores en 13.8 kV de 1.8 MVAr de capacidad

Tipo de Obra	kV	MVA	MVAr	Alim.
Transformación	115/13.8	30	-	-
Compensación	13.8	-	1.8	-
Alimentadores	13.8	-	-	2
Total	-	30	1.8	2

Beneficios del proyecto

Con el proyecto será posible atender el suministro en la red eléctrica de 13.8 kV ante el incremento de demanda esperado en la zona de influencia de la subestación eléctrica, mejorando las condiciones económicas de la región. De igual forma se optimizarán los circuitos de media tensión permitiendo la reducción de los costos de operación y la reducción las pérdidas eléctricas en media tensión.

Fecha Factible de Entrada en Operación

Área de Influencia del Proyecto

Diciembre de 2022

Álamo, Tuxpan, Castillo de Teayo, y Tihuatlán, Vera-

D19-OR2

TEPEYAC BANCO 2

Infraestructura Propuesta y metas físicas

- · Instalación del banco 2 en la subestación eléctrica Tepeyac con 30 MVA de capacidad y relación 115/13.8 kV.
- · Cinco alimentadores de media tensión, 2.5 km de red de media tensión que permitirán respaldar los circuitos actuales.
- · Instalación de un banco de capacitores en 13.8 kV con una capacidad de 1.8 MVAr.

Tipo de Obra	kV	MVA	MVAr	Alim.
Transformación	115/13.8	30	-	-
Compensación	13.8	-	1.8	-
Alimentadores	13.8	-	-	5
Total	-	30	1.8	5

Beneficios del proyecto

Con el proyecto será posible atender el suministro en la red eléctrica de 13.8 kV ante el incremento de demanda esperado en la zona de influencia de la subestación eléctrica, mejorando las condiciones económicas de la región. De igual forma se optimizarán los circuitos de media tensión permitiendo la reducción de los costos de operación y la reducción las pérdidas eléctricas en media tensión.

Fecha Factible de Entrada en Operación

Área de Influencia del Proyecto

Diciembre de 2022

Poza Rica, Veracruz

D19-OR3

ZAPATA ORIENTE BANCO 1

Infraestructura Propuesta y metas físicas

- · Construcción de 1.0 km de línea de transmisión doble circuito en 115 kV.
- · Construcción de una nueva subestación eléctrica con un banco de transformación de 20 MVA de capacidad y relación de transformación 115/34.5 kV.
- · Dos alimentadores en alta tensión y cuatro alimentadores en media tensión, 2 km de red de media tensión.
- Instalación de un banco de capacitores en 34.5 kV con una capacidad de 1.2 MVAr.

Tipo de Obra	kV	km-c	MVA	MVAr	Alim.
Transmisión	115	2	-	-	-
Transformación	115/34.5	-	20	-	-
Compensación	34.5	-	-	1.2	-
Alimentadores	115	-	-	-	2
	34.5	-	-	-	4
Total	-	2	20	1.2	6

Beneficios del proyecto

Con el proyecto será posible atender el suministro en la red eléctrica en la región oriente de la ciudad de Emiliano Zapata.

Fecha Factible de Entrada en Operación

Área de Influencia del Proyecto

Diciembre de 2023

Emiliano Zapata, Tabasco

D19-OR4

PEROTE DOS BANCO 1 (SUSTITUCIÓN)

Infraestructura Propuesta y metas físicas

- Sustitución del banco 1 existente en la subestación eléctrica Perote Dos por un banco de 30 MVA de capacidad y relación 115/13.8 kV.
- Instalación de un banco de capacitores en 13.8 kV con una capacidad de 1.8 MVAr.
- · Un alimentador en media tensión, 0.5 km de red de media tensión.

Tipo de Obra	kV	MVA	MVAr	Alim.
Transformación	115/13.8	30	-	-
Compensación	13.8	-	1.8	-
Alimentadores	13.8	-	-	1
Total	-	30	1.8	1

Beneficios del proyecto

Con el proyecto será posible atender el suministro en la red eléctrica de 13.8 kV ante el incremento de demanda esperado en la zona de influencia de la subestación eléctrica, mejorando las condiciones económicas de la región. De igual forma se optimizarán los circuitos de media tensión permitiendo la reducción de los costos de operación y la reducción las pérdidas eléctricas en media tensión.

Fecha Factible de Entrada en Operación

Área de Influencia del Proyecto

Marzo de 2023

Valle de Perote, Veracruz

D19-OR5

SIMOJOVEL BANCO 2

Infraestructura Propuesta y metas físicas

- · Instalación del banco 2 en la subestación eléctrica Simojovel con 9.375 MVA de capacidad y relación de transformación 115/13.8 kV.
- · Instalación de un banco de capacitores en 13.8 kV con capacidad de 0.6 MVAr.

Tipo de Obra	kV	MVA	MVAr
Transformación	115/13.8	9.375	-
Compensación	13.8	-	0.6
Total	-	9.375	0.6

Beneficios del proyecto

Con el proyecto será posible atender el suministro en la red eléctrica ante el incremento de demanda esperado en la zona de influencia de la subestación eléctrica, mejorando las condiciones económicas de la región. De igual forma se optimizarán los circuitos de media tensión permitiendo la reducción de los costos de operación y la reducción las pérdidas eléctricas en media tensión.

Fecha Factible de Entrada en Operación

Área de Influencia del Proyecto

Diciembre de 2022

Municipios de Simojovel, Huitiupán y el Bosque, Chiapas

D19-OR6

PASO DEL TORO BANCO 2 (SUSTITUCIÓN)

Infraestructura Propuesta y metas físicas

- Sustitución del banco 2 existente en la subestación eléctrica Paso del Toro por un banco de 20 MVA de capacidad y relación de transformación 115/13.8 kV.
- Instalación de un banco de capacitores en 13.8 kV con una capacidad de 1.2 MVAr.
- · Un alimentador en 13.8 kV y un circuito de 0.5 km asociado para reconfigurar las trayectorias existentes.

Tipo de Obra	kV	MVA	MVAr	Alim.
Transformación	115/13.8	20	-	-
Compensación	13.8	-	1.2	-
Alimentadores	13.8	-	-	1
Total	-	20	1.2	1

Beneficios del proyecto

Con el proyecto será posible atender el suministro en la red eléctrica ante el incremento de demanda esperado en la zona de influencia de la subestación eléctrica, mejorando las condiciones económicas de la región

Fecha Factible de Entrada en Operación

Área de Influencia del Proyecto

Diciembre de 2022

Medellín del Bravo, Alvarado y Tlalixcoyan, Veracruz

D19-OR7

NANCHITAL DOS BANCO 2 (SUSTITUCIÓN)

Infraestructura Propuesta y metas físicas

- · Sustitución del banco 2 existente en la subestación eléctrica Nanchital Dos por un banco de 30 MVA de capacidad y relación de transformación 115/13.8 kV.
- · Dos alimentadores en media tensión.
- · 2.4 km de red de media tensión.

• Instalación de un banco de capacitores en 13.8 kV con una capacidad de 1.8 MVAr.

Tipo de Obra	kV	MVA	MVAr	Alim.
Transformación	115/13.8	30	-	-
Compensación	13.8	-	1.8	-
Alimentadores	13.8	-	-	2
Total	-	30	1.8	2

Beneficios del proyecto

Con el proyecto será posible atender el suministro en la red eléctrica ante el incremento de demanda esperado en la zona de influencia de la subestación eléctrica, mejorando las condiciones económicas de la región. De igual forma se optimizarán los circuitos de media tensión permitiendo la reducción de los costos de operación y la reducción las pérdidas eléctricas en media tensión.

Fecha Factible de Entrada en Operación

Área de Influencia del Proyecto

Diciembre de 2022

Nanchital, Ixhuatlán del Sureste y Moloacán, Veracruz

JAUJA BANCO 1

Infraestructura Propuesta y metas físicas

- · Construcción de 5.2 km de línea de transmisión doble circuito en 115 kV y 2 km de red de media tensión.
- · Construcción de una nueva subestación eléctrica con un banco de transformación de 30 MVA con relación 115/13.8 kV.
- Instalación de un banco de capacitores en 13.8 kV de 1.8 MVAr.

· Se contemplan 4 alimentadores en media tensión para reconfiguración de carga entre la subestación Tepic Industrial y la nueva subestación Jauja, conexión de nuevas líneas y equipos en subestaciones, así como la configuración de Bus principal-Bus de Transferencia en el lado de Alta Tensión.

Tipo de Obra	kV	km-c	MVA	MVAr	Alim.
Transmisión	115	10.4	-	-	-
Transformación	115/13.8	-	30	-	-
Compensación	13.8	-	-	1.8	-
Alimentadores	115	-	-	-	2
AllTieritadores	13.8	-	-	-	4
Total	-	5.2	30	1.8	6

Beneficios del proyecto

Con el proyecto será posible atender el suministro en la red eléctrica ante el incremento de demanda esperado en la zona de influencia de la subestación eléctrica, mejorando las condiciones económicas de la región. De igual forma se optimizarán los circuitos de media tensión permitiendo la reducción de los costos de operación y la reducción las pérdidas eléctricas en media tensión.

Fecha Factible de Entrada en Operación

Área de Influencia del Proyecto

Noviembre de 2023

Tepic, Nayarit

CENTRO BANCO 1

Infraestructura Propuesta y metas físicas

- · Construcción de 0.95 km de línea de transmisión doble circuito en 115 kV y 2.5 km de red de media tensión.
- · Construcción de una nueva subestación eléctrica con un banco de transformación de 30 MVA con relación 115/13.8 kV.
- · Instalación de un banco de capacitores en 13.8 kV de 1.8 MVAr.
- · El proyecto contempla alimentadores y circuitos en media tensión que servirán para reconfigurar

los existentes en las subestaciones Vallarta I y Nogalito. También se contempla el bus principal y bus de transferencia en alta tensión, así como alimentadores adicionales para la conexión de nuevas líneas y equipos en subestaciones.

Tipo de Obra	kV	km-c	MVA	MVAr	Alim.
Transmisión	115	1.9	-	-	-
Transformación	115/13.8	-	30	-	-
Compensación	13.8	-	-	1.8	-
Alimentadores	115	-	-	-	2
Allinentadores	13.8	-	-	-	5
Total	-	1.9	30	1.8	7

Beneficios del proyecto

Con el proyecto será posible atender el suministro en la red eléctrica ante el incremento de demanda esperado en la zona de influencia de la subestación eléctrica, mejorando las condiciones económicas de la región. De igual forma se optimizarán los circuitos de media tensión permitiendo la reducción de los costos de operación y la reducción las pérdidas eléctricas en media tensión.

Fecha Factible de Entrada en Operación

Área de Influencia del Proyecto

Diciembre de 2023

Puerto Vallarta Jalisco

D19-OC4 ACATIC BANCO 1

Infraestructura Propuesta y metas físicas

- · Construcción de 0.4 km de línea de transmisión doble circuito en 115 kV.
- Construcción de una nueva subestación eléctrica con un banco de transformación de 20 MVA con relación 115/23 kV.
- · Instalación de un banco de capacitores en 23 kV de 1.2 MVAr.
- El proyecto contempla la entrada y salida de las líneas de alta tensión para quedar en anillo. Así como la configuración de Bus principal - Bus de Transferencia en el lado de Alta Tensión.

Tipo de Obra	kV	km-c	MVA	MVAr	Alim.
Transmisión	115	0.8	-	-	-
Transformación	115/23	-	20	-	-
Compensación	23	-	-	1.2	-
Alimentadores	115	-	-	-	2
	23	-	-	-	3
Total	-	0.8	20	1.2	5

Beneficios del proyecto

Con el proyecto será posible atender el suministro en la red eléctrica ante el incremento de demanda esperado en la zona de influencia de la subestación eléctrica, mejorando las condiciones económicas de la región. De igual forma se optimizarán los circuitos de media tensión permitiendo la reducción de los costos de operación y la reducción las pérdidas eléctricas en media tensión

Fecha Factible de Entrada en Operación

Área de Influencia del Proyecto

Abril de 2023

Tepatitlán y Acatic, Jalisco

TOLIMÁN BANCO 1

Infraestructura Propuesta y metas físicas

- · Construcción de 13.6 km de línea de transmisión en un circuito de 115 kV, 1.5 km de red de media tensión.
- Construcción de una nueva subestación eléctrica con un banco de transformación de 20 MVA con relación 115/23 kV.
- · Instalación de un banco de capacitores en 23 kV de 1.2 MVAr.
- · Dos alimentadores en 115 kV en la subestación Juan Rulfo y 3 alimentadores en media tensión.

Tipo de Obra	kV	km-c	MVA	MVAr	Alim.
Transmisión	115	13.6	-	-	-
Transformación	115/23	-	20	-	-
Compensación	23	-	-	1.2	-
Alimentadores	115	-	-	-	2
	23	-	-	-	3
Total	-	13.6	20	1.2	5

Beneficios del proyecto

Con el proyecto será posible atender el suministro en la red eléctrica ante el incremento de demanda esperado en la zona de influencia de la subestación eléctrica, mejorando las condiciones económicas de la región. De igual forma se optimizarán los circuitos de media tensión permitiendo la reducción de los costos de operación y la reducción las pérdidas eléctricas en media tensión.

Fecha Factible de Entrada en Operación

Área de Influencia del Proyecto

Junio de 2023

Tolimán y Tuxcacuezco, Jalisco

TAPALPA BANCO 1

Infraestructura Propuesta y metas físicas

- · Construcción de 11 km de línea de transmisión en 115 kV en doble circuito, 1.5 km de red de media tensión.
- · Construcción de una nueva subestación eléctrica con un banco de transformación de 20 MVA con relación 115/23 kV.
- · Instalación de un banco de capacitores de 1.2 MVAr en 23 kV.
- · Dos alimentadores en 115 kV y 3 alimentadores en media tensión.

Tipo de Obra	kV	km-c	MVA	MVAr	Alim.
Transmisión	115	22	-	-	-
Transformación	115/23	-	20	-	-
Compensación	23	-	-	1.2	-
Alimentadores	115	-	-	-	2
	23	-	-	-	3
Total	-	22	20	1.2	5

Beneficios del proyecto

Con el proyecto será posible atender el suministro en la red eléctrica ante el incremento de demanda esperado en la zona de influencia de la subestación eléctrica, mejorando las condiciones económicas de la región. De igual forma se optimizarán los circuitos de media tensión permitiendo la reducción de los costos de operación y la reducción las pérdidas eléctricas en media tensión.

Fecha Factible de Entrada en Operación

Área de Influencia del Proyecto

Junio de 2023

Tapalpa, Atemajac de Brizuela, Jalisco

SOLEDAD DE GRACIANO SÁNCHEZ BANCO 2

Infraestructura Propuesta y metas físicas

- Instalación del banco 2 en la subestación eléctrica Soledad de Graciano Sánchez con 30 MVA de capacidad y relación de transformación 115/13.8 kV.
- · Instalación de un banco de capacitores en 13.8 kV de 1.8 MVAr.
- · 6 alimentadores en media tensión.

· 2.6 km de red de media tensión.

Tipo de Obra	kV	MVA	MVAr	Alim.
Transformación	115/13.8	30	-	-
Compensación	13.8	-	1.8	-
Alimentadores	13.8	-	-	6
Total	-	30	1.8	6

Beneficios del proyecto

Con el proyecto será posible atender el suministro en la red eléctrica ante el incremento de demanda esperado en la zona de influencia de la subestación eléctrica, mejorando las condiciones económicas de la región. De igual forma se optimizarán los circuitos de media tensión permitiendo la reducción de los costos de operación y la reducción las pérdidas eléctricas en media tensión.

Fecha Factible de Entrada en Operación

Área de Influencia del Proyecto

Junio de 2022

Soledad de Graciano Sánchez, San Luis Potosí

D19-OC11

CORTÁZAR BANCO 2

Infraestructura Propuesta y metas físicas

- · Instalación del banco 2 en la subestación eléctrica Cortázar con 20 MVA de capacidad y relación de transformación 115/13.8 kV.
- · Instalación de un banco de capacitores en 13.8 kV de 1.2 MVAr.
- · 4 alimentadores en media tensión.

· 1.6 km de red de media tensión.

Tipo de Obra	kV	MVA	MVAr	Alim.
Transformación	115/13.8	20	-	-
Compensación	13.8	-	1.2	-
Alimentadores	13.8	-	-	4
Total	-	20	1.2	4

Beneficios del proyecto

Con el proyecto será posible atender el suministro en la red eléctrica ante el incremento de demanda esperado en la zona de influencia de la subestación eléctrica, mejorando las condiciones económicas de la región. De igual forma se optimizarán los circuitos de media tensión permitiendo la reducción de los costos de operación y la reducción las pérdidas eléctricas en media tensión.

Fecha Factible de Entrada en Operación

Área de Influencia del Proyecto

Diciembre de 2023

Cortázar, Guanajuato

MORELOS BANCO 1

Infraestructura Propuesta y metas físicas

- · Construcción de 3.0 km de línea de transmisión en 115 kV en doble circuito y 2.3 km de línea de media tensión.
- · Construcción de una nueva subestación eléctrica con un banco de transformación de 30 MVA de capacidad y relación de transformación 115/13.8 kV.
- Instalación de un banco de capacitores en 13.8 kV de 1.8 MVAr.
- · Dos alimentadores en 115 kV y 6 alimentadores en media tensión.

Tipo de Obra	kV	km-c	MVA	MVAr	Alim.
Transmisión	115	6	-	-	-
Transformación	115/13.8	-	30	-	-
Compensación	13.8	-	-	1.8	-
Alimentadores	115	-	-	-	2
	13.8	-	-	-	6
Total	-	6	30	1.8	8

Beneficios del proyecto

Con el proyecto será posible atender el suministro en la red eléctrica ante el incremento de demanda esperado en la zona de influencia de la subestación eléctrica, mejorando las condiciones económicas de la región. De igual forma se optimizarán los circuitos de media tensión permitiendo la reducción de los costos de operación y la reducción las pérdidas eléctricas en media tensión.

Fecha Factible de Entrada en Operación

Área de Influencia del Proyecto

Agosto de 2023

León, Guanajuato

QUERÉTARO PONIENTE BANCO 2

Infraestructura Propuesta y metas físicas

- · Instalación del banco 2 en la subestación eléctrica Querétaro Poniente con 30 MVA de capacidad y relación de transformación 115/13.8 kV.
- · Instalación de un banco de capacitores en 13.8 kV de 1.8 MVAr.
- · 6 alimentadores en media tensión.

· 2.33 km de red de media tensión.

Tipo de Obra	kV	MVA	MVAr	Alim.
Transformación	115/13.8	30	-	-
Compensación	13.8	-	1.8	-
Alimentadores	13.8	-	-	6
Total	-	30	1.8	6

Beneficios del proyecto

Con el proyecto será posible atender el suministro en la red eléctrica ante el incremento de demanda esperado en la zona de influencia de la subestación eléctrica, mejorando las condiciones económicas de la región. De igual forma se optimizarán los circuitos de media tensión permitiendo la reducción de los costos de operación y la reducción las pérdidas eléctricas en media tensión.

Fecha Factible de Entrada en Operación

Área de Influencia del Proyecto

Diciembre de 2022

Querétaro, Querétaro

D19-OC14

SAN CARLOS BANCO 2

Infraestructura Propuesta y metas físicas

- · Instalación del banco 2 en la subestación eléctrica San Carlos con 30 MVA de capacidad y relación de transformación 115/13.8 kV.
- · Instalación de un banco de capacitores en 13.8 kV de 1.8 MVAr.
- · 6 alimentadores en media tensión.

· 4.8 km de red de media tensión.

Tipo de Obra	kV	MVA	MVAr	Alim.
Transformación	115/13.8	30	-	-
Compensación	13.8	-	1.8	-
Alimentadores	13.8	-	-	6
Total	-	30	1.8	6

Beneficios del proyecto

Con el proyecto será posible atender el suministro en la red eléctrica ante el incremento de demanda esperado en la zona de influencia de la subestación eléctrica, mejorando las condiciones económicas de la región. De igual forma se optimizarán los circuitos de media tensión permitiendo la reducción de los costos de operación y la reducción las pérdidas eléctricas en media tensión.

Fecha Factible de Entrada en Operación

Área de Influencia del Proyecto

Diciembre de 2023

León, Guanajuato

CHOACAHUI BANCO 1

Infraestructura Propuesta y metas físicas

- · Instalación del banco 1 en la subestación eléctrica Choacahui con 40 MVA de capacidad y relación de transformación 230/34.5 kV.
- · Instalación de un banco de capacitores de 34.5 kV con capacidad de 2.4 MVAr.
- Tres alimentadores en 34.5 kV con sus respectivos circuitos para respaldar la infraestructura existente.

Tipo de Obra	kV	MVA	MVAr	Alim.
Transformación	230/34.5	40	-	-
Compensación	34.5	-	2.4	-
Alimentadores	34.5	-	-	3
Total	-	40	2.4	3

Beneficios del proyecto

Con el proyecto será posible atender el suministro en la red eléctrica ante el incremento de demanda esperado en la zona de influencia de la subestación eléctrica, mejorando las condiciones económicas de la región. De igual forma se optimizarán los circuitos de media tensión permitiendo la reducción de los costos de operación y la reducción las pérdidas eléctricas en media tensión.

Fecha Factible de Entrada en Operación

Área de Influencia del Proyecto

Mayo de 2023

Ahome, Sinaloa

MANIOBRAS MUNISOL BANCO 1

Infraestructura Propuesta y metas físicas

- · Instalación del banco 1 en la subestación eléctrica Maniobras Munisol con 12.5 MVA de capacidad y relación de transformación 115/13.8 kV.
- · Instalación de un banco de capacitores en 13.8 kV con capacidad de 0.9 MVAr.
- Dos alimentadores en 13.8 kV con sus respectivos circuitos en media tensión.

Tipo de Obra	kV	MVA	MVAr	Alim.
Transformación	115/13.8	12.5	-	-
Compensación	13.8	-	0.9	-
Alimentadores	13.8	-	-	2
Total	-	12.5	0.9	2

Beneficios del proyecto

Con el proyecto será posible atender el suministro en la red eléctrica ante el incremento de demanda esperado en la zona de influencia de la subestación eléctrica, mejorando las condiciones económicas de la región. De igual forma se optimizarán los circuitos de media tensión permitiendo la reducción de los costos de operación y la reducción las pérdidas eléctricas en media tensión.

Fecha Factible de Entrada en Operación

Área de Influencia del Proyecto

Abril de 2022

Hermosillo, Sonora

SANTA FE BANCO 1

Infraestructura Propuesta y metas físicas

- · Construcción de 1.95 km de línea de transmisión doble circuito en 115 kV.
- · Construcción de una nueva subestación con un banco de transformación relación 115/13.8 kV y una capacidad de 30 MVA
- · Instalación de un banco de capacitores en 13.8 kV con una capacidad de 1.8 MVAr.
- · Dos alimentadores en 115 kV y seis en media tensión. 3 km de red de media tensión.

Tipo de Obra	kV	km-c	MVA	MVAr	Alim.
Transmisión	115	3.9	-	-	-
Transformación	115/13.8	-	30	-	-
Compensación	13.8	-	-	1.8	-
Alimentadores	115	-	-	-	2
	13.8	-	-	-	6
Total	-	3.9	30	1.8	8

Beneficios del proyecto

Con el proyecto será posible atender el suministro en la red eléctrica ante el incremento de demanda esperado en la zona de influencia de la subestación eléctrica, mejorando las condiciones económicas de la región. De igual forma se optimizarán los circuitos de media tensión permitiendo la reducción de los costos de operación y la reducción las pérdidas eléctricas en media tensión.

Fecha Factible de Entrada en Operación

Área de Influencia del Proyecto

Abril de 2023

Culiacán, Sinaloa.

TAMAZULA BANCO 1

Infraestructura Propuesta y metas físicas

- · Construcción de 12.3 km de línea de transmisión en 115 kV.
- Construcción de una subestación eléctrica con un banco de transformación de 20 MVA de capacidad y una relación de transformación 115/13.8 kV.
- · Instalación de un banco de capacitores en 13.8 kV con capacidad de 1.2 MVAr.
- Un alimentador en 115 kV en SE San Rafael y cuatro en 13.8 kV con sus respectivos circuitos en media tensión.

Tipo de Obra	kV	km-c	MVA	MVAr	Alim.
Transmisión	115	12.3	-	-	-
Transformación	115/13.8	-	20	-	-
Compensación	13.8	-	-	1.2	-
Alimentadores	115	-	-	-	1
	13.8	-	-	-	4
Total	-	12.3	20	1.2	5

Beneficios del proyecto

Con el proyecto será posible atender el suministro en la red eléctrica ante el incremento de demanda esperado en la zona de influencia de la subestación eléctrica, mejorando las condiciones económicas de la región. De igual forma se optimizarán los circuitos de media tensión permitiendo la reducción de los costos de operación y la reducción las pérdidas eléctricas en media tensión.

Fecha Factible de Entrada en Operación

Área de Influencia del Proyecto

Mayo de 2023

Guasave, Sinaloa.

TERRAMARA BANCO 1

Infraestructura Propuesta y metas físicas

- · Construcción de 0.6 km de línea de transmisión de doble circuito en 115 kV.
- · Construcción de una subestación eléctrica con un banco de transformación de 20 MVA y relación de transformación 115/34.5 kV.
- · Instalación de un banco de capacitores en 34.5 kV con una capacidad de 1.2 MVAr
- Dos alimentadores en 115 kV y dos alimentadores en 34.5 kV con sus respectivos circuitos en media tensión.

Tipo de Obra	kV	km-c	MVA	MVAr	Alim.
Transmisión	115	1.2	-	-	-
Transformación	115/34.5	-	20	-	-
Compensación	34.5	-	-	1.2	-
Alimentadores	115	-	-	-	2
	34.5	-	-	-	2
Total	-	1.2	20	1.2	4

Beneficios del proyecto

Con el proyecto será posible atender el suministro en la red eléctrica ante el incremento de demanda esperado en la zona de influencia de la subestación eléctrica, mejorando las condiciones económicas de la región. De igual forma se optimizarán los circuitos de media tensión permitiendo la reducción de los costos de operación y la reducción las pérdidas eléctricas en media tensión.

Fecha Factible de Entrada en Operación

Área de Influencia del Proyecto

Abril de 2023

Hermosillo, Sonora

D19-NT1

NUEVO IDEAL BANCO 1 (SUSTITUCIÓN)

Infraestructura Propuesta y metas físicas

- Sustitución del banco 1 existente en la subestación eléctrica Nuevo Ideal por un banco de 20 MVA de capacidad y relación de transformación 115/34.5 kV.
- · Instalación de un banco de capacitores en 34.5 kV de 1.2 MVAr.
- Un alimentador en media tensión y 2.0 km de red de media tensión que servirán para crear una nueva trayectoria que permitirá respaldar los circuitos actuales.

Tipo de Obra	kV	MVA	MVAr	Alim.
Transformación	115/34.5	20	-	-
Compensación	34.5	-	1.2	-
Alimentadores	34.5	-	-	1
Total	-	20	1.2	1

Beneficios del proyecto

Con el proyecto será posible atender el suministro en la red eléctrica ante el incremento de demanda esperado en la zona de influencia de la subestación eléctrica, mejorando las condiciones económicas de la región. De igual forma se optimizarán los circuitos de media tensión permitiendo la reducción de los costos de operación y la reducción las pérdidas eléctricas en media tensión.

Fecha Factible de Entrada en Operación

Área de Influencia del Proyecto

Abril de 2023

Nuevo Ideal, Durango

D19-NT2

CANATLÁN DOS BANCO 1 (SUSTITUCIÓN)

Infraestructura Propuesta y metas físicas

- Sustitución del banco 1 existente en la subestación eléctrica Nuevo Ideal por un banco de 20 MVA de capacidad y relación de transformación 115/34.5 kV.
- Un alimentador en media tensión, 2.0 km de red de media tensión que servirán para crear una nueva trayectoria que permitirá respaldar los circuitos actuales.
- · Instalación de un banco de capacitores en 34.5 kV de 1.2 MVAr.

Tipo de Obra	kV	MVA	MVAr	Alim.
Transformación	115/34.5	20	-	-
Compensación	34.5	-	1.2	-
Alimentadores	34.5	-	-	1
Total	-	20	1.2	1

Beneficios del proyecto

Con el proyecto será posible atender el suministro en la red eléctrica ante el incremento de demanda esperado en la zona de influencia de la subestación eléctrica, mejorando las condiciones económicas de la región. De igual forma se optimizarán los circuitos de media tensión permitiendo la reducción de los costos de operación y la reducción las pérdidas eléctricas en media tensión.

Fecha Factible de Entrada en Operación

Área de Influencia del Proyecto

Abril de 2023

Nuevo Ideal, Durango

D19-NT3

GUADIANA BANCOS 1 Y 2 (SUSTITUCIÓN)

Infraestructura Propuesta y metas físicas

- Sustitución de los bancos 1 y 2 existentes en la subestación eléctrica Guadiana por dos bancos de 30 MVA de capacidad y relación de transformación 115/13.8 kV.
- Tres alimentadores en media tensión 2 y 1 respectivamente, 1.0 km de red de media tensión que servirán para crear una nueva trayectoria que permitirá respaldar los circuitos actuales.
- · Instalación de dos bancos de capacitores en 13.8 kV de 1.8 MVAr.

Tipo de Obra	kV	MVA	MVAr	Alim.
Transformación	115/13.8	2 x 30	-	-
Compensación	13.8	-	2 x 1.8	-
Alimentadores	13.8	-	-	3
Total	-	60	3.6	3

Beneficios del proyecto

Con el proyecto será posible atender el suministro en la red eléctrica ante el incremento de demanda esperado en la zona de influencia de la subestación eléctrica, mejorando las condiciones económicas de la región. De igual forma se optimizarán los circuitos de media tensión permitiendo la reducción de los costos de operación y la reducción las pérdidas eléctricas en media tensión.

Fecha Factible de Entrada en Operación

Área de Influencia del Proyecto

Abril de 2022

Durango, Durango

D19-NE1

VALLE ALTO BANCO 1 (SUSTITUCIÓN)

Infraestructura Propuesta y metas físicas

- · Sustitución del banco 1 existente en la subestación eléctrica Valle Alto por un banco de 30 MVA de capacidad y relación de transformación 115/13.8 kV.
- · Instalación de un banco de capacitores en 13.8 kV de 1.8 MVAr.
- · Un alimentador en media tensión.
- · Dentro de este proyecto también se consideran los equipos de protección y comunicación necesa-

rios, así como la adecuación de la caseta actual y las obras civiles necesarias.

Tipo de Obra	kV	MVA	MVAr	Alim.
Transformación	115/13.8	30	-	-
Compensación	13.8	-	1.8	-
Alimentadores	13.8	-	-	1
Total	-	30	1.8	1

Beneficios del proyecto

Con el proyecto será posible atender el suministro en la red eléctrica ante el incremento de demanda esperado en la zona de influencia de la subestación eléctrica, mejorando las condiciones económicas de la región. De igual forma se optimizarán los circuitos de media tensión permitiendo la reducción de los costos de operación y la reducción las pérdidas eléctricas en media tensión.

Fecha Factible de Entrada en Operación

Área de Influencia del Proyecto

Diciembre de 2022

Ciudad Valles, San Luis Potosí

D19-NE2

SAN BARTOLO BANCO 1

Infraestructura Propuesta y metas físicas

- · Construcción de 6.0 km de línea de transmisión en 115 kV en doble circuito, 3.8 km de red de media tensión
- · Construcción de una nueva subestación eléctrica con un banco de transformación de 9.375 MVA de capacidad y relación de transformación 115/23 kV.
- · Instalación de un banco de capacitores en 23 kV de 0.6 MVAr.
- · Se considera dentro del proyecto los equipos de protección y comunicación necesarios, así como la

adecuación de la caseta actual y las obras civiles necesarias.

· Dos alimentadores en alta tensión y dos alimentadores en media tensión.

Tipo de Obra	kV	km-c	MVA	MVAr	Alim.
Transmisión	115	12	-	-	-
Transformación	115/23	-	9.375	-	-
Compensación	23	-	-	0.6	-
Alimentadores	115	-	-	-	2
	23	-	-	-	2
Total	-	12	9.375	0.6	4

Beneficios del proyecto

Con el proyecto será posible atender el suministro en la red eléctrica ante el incremento de demanda esperado en la zona de influencia de la subestación eléctrica, mejorando las condiciones económicas de la región. De igual forma se optimizarán los circuitos de media tensión permitiendo la reducción de los costos de operación y la reducción las pérdidas eléctricas en media tensión..

Fecha Factible de Entrada en Operación

Diciembre de 2023

Área de Influencia del Proyecto

Tenango de Doria, San Bartolo y Huehuetla, Hidalgo

D19-NE3

TAMBACA BANCO 1 (SUSTITUCIÓN)

Infraestructura Propuesta y metas físicas

- · Sustitución del Banco 1 existente en la subestación eléctrica Tambaca por un banco de 20 MVA de capacidad y relación de transformación 115/34.5 kV.
- · Instalación de un banco de capacitores en 34.5 kV de 1.2 MVAr.
- · Dos alimentadores en media tensión.
- · Se considera dentro del proyecto los equipos de protección y comunicación necesarios, así como la

adecuación de la caseta actual, así como las obras civiles necesarias. Adicionalmente el proyecto cuenta con dos alimentadores en media tensión.

Tipo de Obra	kV	MVA	MVAr	Alim.
Transformación	115/34.5	20	-	-
Compensación	34.5	-	1.2	-
Alimentadores	34.5	-	-	2
Total	-	20	-	2

Beneficios del proyecto

Con el proyecto será posible atender el suministro en la red eléctrica ante el incremento de demanda esperado en la zona de influencia de la subestación eléctrica, mejorando las condiciones económicas de la región. De igual forma se optimizarán los circuitos de media tensión permitiendo la reducción de los costos de operación y la reducción las pérdidas eléctricas en media tensión.

Fecha Factible de Entrada en Operación

Área de Influencia del Proyecto

Diciembre de 2023

Tamasopo, Valles, Aquismón y Santa Catarina, San Luis Potosí

D19-BC1

LIBRAMIENTO BANCO 1

Infraestructura Propuesta y metas físicas

- · Construcción de 0.2 km de línea de transmisión doble circuito en 230 kV.
- Construcción de una nueva subestación eléctrica con un banco de transformación de 40 MVA de capacidad y relación de transformación 230/13.8 kV.
- · Instalación de un banco de capacitores en 13.8 kV con capacidad de 2.4 MVAr.
- Dos alimentadores en 230 kV y 6 alimentadores en 13.8 kV con sus respectivos circuitos en media tensión.

Tipo de Obra	kV	km-c	MVA	MVAr	Alim.
Transmisión	230	0.4	-	-	-
Transformación	230/13.8	-	40	-	-
Compensación	13.8	-	-	2.4	-
Alimentadores	230	-	-	-	2
	13.8	-	-	-	6
Total	-	0.4	40	2.4	8

Beneficios del proyecto

Con el proyecto será posible atender el suministro en la red eléctrica ante el incremento de demanda esperado en la zona de influencia de la subestación eléctrica, mejorando las condiciones económicas de la región. De igual forma se optimizarán los circuitos de media tensión permitiendo la reducción de los costos de operación y la reducción las pérdidas eléctricas en media tensión.

Fecha Factible de Entrada en Operación

Área de Influencia del Proyecto

Junio de 2022

San Luis Río Colorado, Sonora

D19-BC2

GONZÁLEZ ORTEGA BANCO 3

Infraestructura Propuesta y metas físicas

- Instalación del banco 3 en la subestación eléctrica González Ortega con 40 MVA de capacidad y relación de transformación 161/13.8 kV.
- · Instalación de un banco de capacitores en 13.8 kV de 2.4 MVAr de capacidad.
- · Seis alimentadores en 13.8 kV para la conexión de los circuitos en media tensión.

Tipo de Obra	kV	MVA	MVAr	Alim.
Transformación	161/13.8	40	-	-
Compensación	13.8	-	2.4	-
Alimentadores	13.8	-	-	6
Total	-	40	2.4	6

Beneficios del proyecto

Con el proyecto será posible atender el suministro en la red eléctrica ante el incremento de demanda esperado en la zona de influencia de la subestación eléctrica, mejorando las condiciones económicas de la región. De igual forma se optimizarán los circuitos de media tensión permitiendo la reducción de los costos de operación y la reducción las pérdidas eléctricas en media tensión.

Fecha Factible de Entrada en Operación

Área de Influencia del Proyecto

Junio de 2022

San Luis Río Colorado, Sonora

D19-BS1

CABO FALSO BANCO 2

Infraestructura Propuesta y metas físicas

- Instalación del banco 2 en la subestación eléctrica Cabo Falso con 30 MVA de capacidad y relación de transformación 115/13.8 kV.
- Instalación de un banco de capacitores en 13.8 kV con una capacidad de 1.8 MVAr.
- · Cuatro alimentadores en 13.8 kV para la conexión de nuevos circuitos en media tensión.

Tipo de Obra	kV	MVA	MVAr	Alim.
Transformación	115/13.8	30	-	-
Compensación	13.8	-	1.8	-
Alimentadores	13.8	-	-	4
Total	-	30	1.8	4

Beneficios del proyecto

Con el proyecto será posible atender el suministro en la red eléctrica ante el incremento de demanda esperado en la zona de influencia de la subestación eléctrica, mejorando las condiciones económicas de la región. De igual forma se optimizarán los circuitos de media tensión permitiendo la reducción de los costos de operación y la reducción las pérdidas eléctricas en media tensión.

Fecha Factible de Entrada en Operación

Área de Influencia del Proyecto

Junio de 2022

Los Cabos, Baja California Sur

VIII.5 Proyectos en Estudio en la RNT.

En la siguiente sección se presentan proyectos de ampliación y modernización de la RNT que fueron identificados como necesarios para el cumplimiento del Código de Red en materia de planeación del Sistema Eléctrico Nacional; sin embargo, por cuestiones de incertidumbre de algún insumo relevante

para el proyecto (alta o baja en la demanda, desarrollo de nuevas Centrales Eléctricas, o información relevante de aspectos constructivos) podría ocasionar que no se lleve a cabo la mejor decisión de largo plazo para el sistema eléctrico, por tales motivos se presentan como proyectos en fase de estudio que serán evaluados en el PAMRNT 2020-2034.

P19-OC5

INCREMENTO EN LA CAPACIDAD DE TRANSFORMACIÓN EN LA ZONA SAN LUIS POTOSÍ (EN ESTUDIO)

Infraestructura Propuesta y metas físicas

- · Para resolver a largo plazo la problemática de saturación de transformación en la zona San Luis y tomando en cuenta las posibles complicaciones para la adquisición de terreno y derechos de paso de la zona, se consideran dos posibles soluciones:
- 1. Construcción de una nueva subestación eléctrica, denominada Cerro San Pedro, con dos bancos de transformación 400/115 kV y 400/230 kV, de 375 MVA de capacidad nominal cada uno (incluyen fase de reserva) y red de transmisión asociada.
- 2. Ampliación de la subestación eléctrica La Pila con la adición de un transformador adicional 230/115 kV de 230 kV.

Tipo de Obra	kV	km-c	MVA	Alim.
	400	0.8	-	-
Transmisión	230	26	-	-
	115	32.5	-	-
Transformación	400/115	-	500	-
Transformación	230/115	-	500	-
	400	-	-	4
Alimentadores	230	-	-	4
	115	-	-	4
Total	-	59.3	1,000.00	12

Tipo de Obra	kV	MVA
Transformación	230/115	225
Total	-	225

Beneficios del proyecto

El proyecto se encuentra en fase de estudio debido a las señales de crecimiento de la zona San Luis y la factibilidad de construcción de otros proyectos en la región para el desarrollo de nueva infraestructura tienen cierto grado de incertidumbre que motivan a realizar un estudio más detallado de la zona.

Fecha Factible de Entrada en Operación

Área de Influencia del Proyecto

Abril de 2024

Ciudad de San Luis Potosí. San Luis Potosí

P19-BC4

LA JOVITA ENTRONQUE PRESIDENTE JUÁREZ – LOMAS (EN ESTUDIO)

Infraestructura Propuesta y metas físicas

- · Línea de transmisión La Jovita entronque Presidente Juárez Lomas en 230 kV, 9.3 km, doble circuito.
- · Dos alimentadores en 230 kV tipo Hexafluoruro de Azufre en la subestación eléctrica La Jovita.

Tipo de Obra	kV	km-c	Alim.
Transmisión	230	18.6	-
Alimentadores	230	-	2
Total	-	18.6	2

Beneficios del proyecto

Este proyecto se encuentra en fase de estudio debido a la complejidad para la adquisición de los derechos Inmobiliarios y compra de terrenos, así como la manifestación de impacto ambiental en la región de Ensenada.

Con la entrada en operación del proyecto mejora la Confiabilidad del suministro de la demanda a la región de Ensenada. Asimismo, se tendrá mayor flexibilidad operativa para mantenimiento y ante disturbios de la red eléctrica.

Fecha Factible de Entrada en Operación

Área de Influencia del Proyecto

Abril de 2023

Ensenada, Baja California

119-NO1

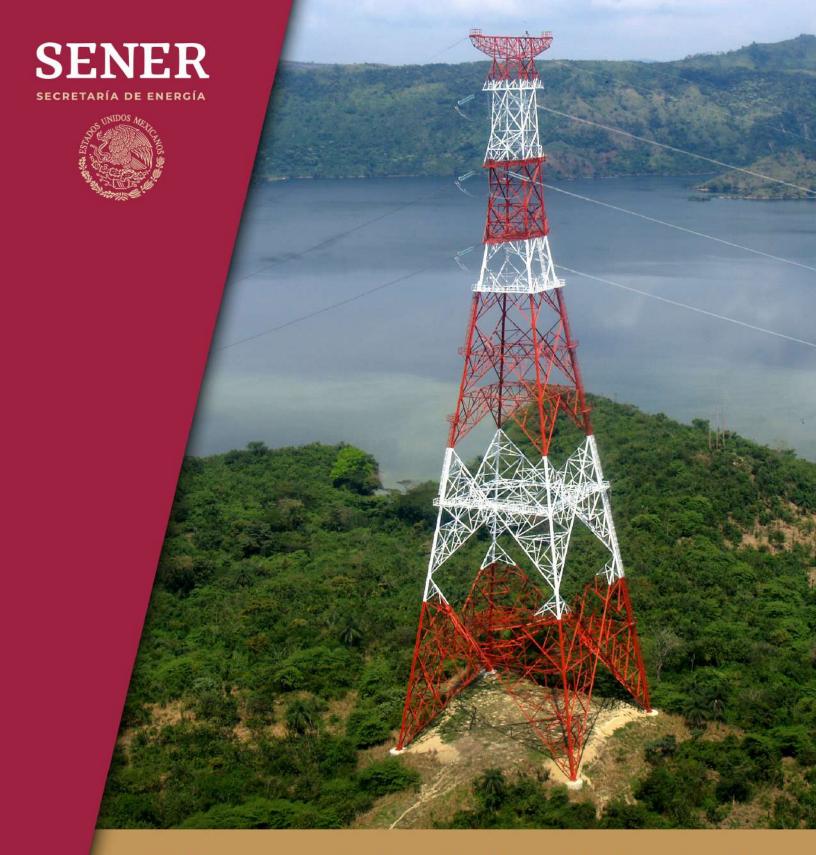
CONVERSIÓN A 400 KV DE LA RED DE TRANSMISIÓN ENTRE LAS GCR NOROESTE Y NORTE (EN ESTUDIO)

Infraestructura Propuesta y metas físicas

- Línea de transmisión Seri Hermosillo V en 400 kV, 20 km, doble circuito con sus respectivos alimentadores.
- Cambio de tensión de operación de 230 kV a 400 kV desde Hermosillo V – Nacozari – Nuevo Casas Grandes – Moctezuma – El Encino con sus respectivos reactores de línea y alimentadores.
- SE Hermosillo V con un banco de transformación de 375 MVA y relación de transformación 400/230 kV (incluye fase de reserva).
- Nueva SE Castillo con dos bancos de transformación de 450 MVA y relación de transformación 400/230 kV (incluye fase de reserva).
- SE Nuevo Casas Grandes con dos bancos de transformación de 375 MVA y relación de transformación 400/230 kV y 400/115 kV (incluyen fase de reserva).

- SE Moctezuma con un banco de transformación de 375 MVA y relación de transformación 400/230 kV.
- Sustitución en la SE El Encino de tres bancos de transformación de 375 MVA y relación de transformación 400/230 kV (incluye fase de reserva).
- Cuatro entronques en 400 kV en la SE Castillo de 0.1 km con sus respectivos alimentadores.
- Traslado de reactores en 230 kV a las SE Industrial Caborca, Seis de Abril, Santa Ana y Puerto Libertad.

Tipo de Obra	kV	km-c	MVA	MVAr	Alim.
Transmisión	400	40.8	-	-	-
Transformación	400/230	-	3,675.00	-	-
Iransiormacion	400/115	-	500	-	-
Compensación	400	-	-	600	-
Compensacion	230	-	-	84	-
Alimentadores	400	-	-	-	18
Allitieritadores	230	-	-	-	4
Total	-	40.8	4,175.00	684	22


Beneficios del proyecto

Este proyecto se encuentra en estudio.

Fecha Factible de Entrada en Operación

Área de Influencia del Proyecto

Abril de 2025

IX. Programa de Ampliación y Modernización de las Redes Generales de Distribución no correspondiente al Mercado Eléctrico Mayorista.

PRODESEN 2019-2033

IX. PROGRAMA DE AMPLIACIÓN Y MODERNIZACIÓN DE LAS REDES GENERALES DE DISTRIBUCIÓN NO CORRESPONDIENTES AL MERCADO ELÉCTRICO MAYORISTA

I Programa de Ampliación y Modernización de la Red Nacional de Transmisión y Redes Generales de Distribución del Mercado Eléctrico Mayorista, se llevará a cabo sobre la base del mandato constitucional de los artículos 25, "Tratándose de la planeación y el control del sistema eléctrico nacional, y del servicio público de transmisión y distribución de energía eléctrica"; 27 "Corresponde exclusivamente a la Nación la planeación y el control del sistema eléctrico nacional, así como el servicio público de transmisión y distribución de energía eléctrica; en estas actividades no se otorgarán concesiones, sin perjuicio de que el Estado pueda celebrar contratos con particulares en los términos que establezcan las leyes, mismas que determinarán la forma en que los particulares podrán participar en las demás actividades de la industria eléctrica"; y el Transitorio 8vo. Del Decreto por el que se reforman y adicionan diversas disposiciones de la Constitución Política de los Estados Unidos Mexicanos, en materia de energía: "Octavo. Derivado de su carácter estratégico, las actividades de exploración y extracción del petróleo y de los demás hidrocarburos, así como el servicio público de transmisión y distribución de energía eléctrica, a que se refiere el presente Decreto se consideran de interés social y orden público, por lo que tendrán preferencia sobre cualquier otra que implique el aprovechamiento de la superficie y del subsuelo de los terrenos afectos a aquéllas".

En relación con la ampliación y modernización de las RGD; adicional a la problemática expuesta para la RNT, la limitación más importante fue la insuficiencia de recursos para llevar a cabo las inversiones necesarias y con oportunidad, para atender la demanda, la reducción de pérdidas técnicas y el funcionamiento óptimo del Sistema Eléctrico Nacional.

El Programa de Ampliación y Modernización de las Redes Generales de Distribución (RGD) considera un crecimiento ordenado y armónico de las RGD, y es el resultado de analizar el comportamiento del sistema de distribución y de los estudios de planeación, para satisfacer la demanda incremental,

mejorar la eficiencia, Calidad y Confiabilidad del suministro de energía eléctrica, e identificar aquellas comunidades rurales y zonas urbanas marginadas que no cuentan con energía eléctrica.

La planeación de las RGD corresponde a un horizonte de cinco años, incluye el estudio de variables como la evolución geoespacial de la demanda, aleatoriedad en la generación distribuida, disponibilidad de los diferentes elementos que conforman las RGD, entre otros, para determinar los proyectos, obras e inversiones requeridas en el periodo 2019-2023.

El objetivo principal del Programa de Ampliación y Modernización de las RGD es abastecer de energía eléctrica a los usuarios finales, bajo los criterios de eficiencia, Calidad, Confiabilidad, Continuidad, seguridad y sustentabilidad, a precios competitivos, considerando además la apertura y acceso abierto y no indebidamente discriminatorio para la integración, gradual y ordenada de la Generación Distribuida (GD). En este sentido, el Programa de Ampliación y Modernización de las RGD contempla objetivos, líneas de acción y proyectos, que se llevarán a cabo en el periodo 2019-2031.

Estos objetivos tienen una fuerte interrelación, de tal forma que los proyectos y obras que se realicen contribuyen a más de uno de ellos, tal como las obras de ampliación que en muchos de los casos permitirán atender la demanda incremental, mejorar los indicadores de Confiabilidad y reducir pérdidas.

Los requerimientos de ampliación y modernización de la infraestructura eléctrica de las RGD se soportan en el diagnóstico de su condición actual, en términos de sus indicadores de Confiabilidad, Calidad y Eficiencia, el pronóstico de demanda máxima en subestaciones 2019-2033 de acuerdo con el CENACE y los supuestos económicos establecidos tanto por la Secretaría de Hacienda y Crédito Público (SHCP) y la Secretaría de Energía (SENER) y que son utilizados en la evaluación económica de los proyectos para la

De conformidad con las Disposiciones Administrativas de Carácter General que contienen los criterios de eficiencia, Calidad, Confiabilidad, Continuidad, seguridad del Sistema Eléctrico Nacional: Código de Red (DOF 08/04/2016) y los principios que establece el Artículo 14 de la Ley de la Industria Eléctrica, y los Artículos 5 y 9 de su Reglamento.

selección de las opciones de mínimo costo. Y se enfoca en los objetivos siguientes:

- Satisfacer la demanda de energía eléctrica en las RGD.
- · Incrementar la eficiencia en la distribución de energía eléctrica.
- Incrementar la Calidad, Confiabilidad y seguridad en las RGD y en el suministro eléctrico.
- Cumplir con los requisitos del mercado eléctrico para las RGD.
- Transitar hacia una Red Eléctrica Inteligente (REI) a fin de optimizar la operación de las RGD.

Objetivo 1. Satisfacer la demanda de energía eléctrica en las RGD.		
Proyectos	Instalación de acometidas y medidores Interconectar la Isla de Holbox.	
Proyecto	Capacidad de alojamiento de GD de las RGD.	
Proyecto	Fondo de Servicio Universal Eléctrico.	

FUENTE: CFE Distribución

Objetivo 2. Incrementar la eficiencia en la distribución de energía eléctrica		
Línea de Acción		
	Incremento de la eficiencia operativa de las Redes Generales de Distribución Mediante la reducción de pérdidas técnicas.	
Provectos	Reducción de pérdidas no técnicas:	
Proyectos	a. Regularizar colonias populares	
	b. Escalar la medición a AMI	
	c. Reemplazar medidores obsoletos	

FUENTE: CFE Distribución

Objetivo 3. Incrementar la calidad, confiabilidad y seguridad en las RGD y en el suministro eléctrico		
Proyectos	Incremento de la confiabilidad de las RGD	
	Modernización de las subestaciones de distribución	
	Modernización de las RGD	
	Reemplazo del cable submarino para Isla Mujeres	
	Operación Remota y Automatismo en redes de Distribución	

FUENTE: CFE Distribución

Objetivo 4. Cumplir con los requisitos del mercado eléctrico para las RGD		
Proyecto	Gestión del Balance de Energía de las RGD para el MEM	

FUENTE: CFE Distribución

Objetivo 5. Transitar hacia una Red Eléctrica Inteligente (REI) a fin de optimizar la operación de las RGD.		
Línea de Acción		
Proyectos	Sistema de Información Geográfica de las RGD	
	Infraestructura de Medición Avanzada	
	Sistema de Administración de Distribución Avanzado	
	Sistema de Gestión Empresarial de Distribución- Suministro	

FUENTE: CFE Distribución

IX.1 Satisfacer la demanda de energía eléctrica en las RGD

Atender la demanda de usuarios actuales y nuevos usuarios

La atención de la demanda actual y futura de energía eléctrica se realiza a través de la expansión y modernización de las RGD. A fin de realizar inversiones óptimas que permitan la expansión y modernización de las RGD, se realizan evaluaciones técnico económicas para atender el crecimiento de la demanda actual y futura de energía eléctrica, así como para garantizar que la operación de los sistemas sea rentable, confiable y segura.

Proyecto 1. Instalación de acometidas y medidores

Este proyecto se desarrolla para atender los incrementos de demanda y de nuevos Centros de Carga que se conectarán a las RGD en los niveles de media y baja tensión en redes aéreas y subterráneas.

El proyecto considera la adquisición e instalación de medidores y acometidas, así como la sustitución de los equipos dañados y obsoletos para brindar la suficiencia necesaria para atender el crecimiento de la demanda y de Centros de Carga de usuarios residenciales, comerciales, industriales y de servicios como bombeo agrícola y alumbrado público, principalmente.

El proyecto incluye, entre otras, las siguientes actividades:

- a. Conexiones: instalar medidor, conductor y accesorios a Centros de Carga que incrementen su demanda y carga contratada o el número de hilos del suministro, así como a nuevos usuarios:
- b. Modificaciones: cambio de medidores y conductores de acometida dañados o que han llegado al final de su vida útil, de los Centros de Carga actuales, y
- c. Desconexiones: retiro del medidor y del conductor de la acometida cuando se da por terminado el contrato de suministro del servicio a solicitud del usuario o por falta de pago.

En el horizonte 2019-2023, se requerirán 293,663 kilómetros de conductor para acometidas y 12,487 millones de medidores, con una inversión de 20,387 millones de pesos (ver Anexo, Tabla 9.1.1.)

Provecto 2. Interconexión de la Isla de Holbox

La Isla de Holbox se encuentra ubicada en el extremo norte del estado de Quintana Roo, en el municipio de Lázaro Cárdenas. Las actividades en la isla demandan 2.5 MW que se abastecen por medio de una central eléctrica con capacidad de 3.2 MW, conformada por cuatro unidades de combustión interna a diésel en 440 V y dos plantas móviles adicional de 1.8 MW utilizadas como respaldo. Además, se cuenta con dos circuitos de distribución, 1,422 Centros de Carga en baja tensión y 23 en media tensión.

Los costos de generación, operación y mantenimiento de la central eléctrica en el último año fueron de 94.4 millones de pesos, se estima que la

demanda de energía eléctrica alcance 6.4 MW en 2024, debido al desarrollo de infraestructura turística en la isla.

El proyecto considera la construcción de un circuito aéreo de 60 km en 34.5 kV incluyendo fibra óptica de la Subestación Eléctrica Popolnah hasta la población de Chiquilá, y continuará con un circuito submarino de 10.5 km hasta la futura Subestación Eléctrica Holbox. Asimismo, se adecuará y modernizará la red de distribución de la isla. La inversión estimada es de 280 millones de pesos.

Garantizar el acceso abierto a la Generación Distribuida no correspondiente al Mercado Eléctrico Mayorista

En la ampliación y modernización de las RGD requeridas para llevar a cabo la interconexión de centrales de Generación Distribuida, se toman en cuenta los siguientes aspectos técnicos:

- Límites térmicos en transformadores y conductores;
- Calidad y regulación de tensión y de frecuencia de la energía;
- Ajustes de los sistemas de protección y control, y
- · Confiabilidad y seguridad del sistema.

Proyecto 1. Capacidad de alojamiento de GD de las RGD

Al mes de enero de 2019 la capacidad de alojamiento total acumulada en los 11,338 circuitos en operación a nivel nacional es de 28 GW. Dicha capacidad es única para cada circuito de acuerdo a criterios operativos y debe revisarse periódicamente.

Para determinar la necesidad de refuerzos en las RGD para la interconexión de futuras centrales de generación distribuida se requiere conocer con precisión la ubicación, magnitud y tipo de generación que podría interconectarse a las RGD en el futuro a fin de evitar inversiones innecesarias que incrementarían el costo de la tarifa de distribución.

FIGURA 9.1. TENDENCIA DE LA CAPACIDAD INSTALADA EN PEQUEÑA Y MEDIANA ESCALA.

NOTA: Información Proporcionada por la empresa productiva subsidiaria de la Comisión Federal de Electricidad, CFE Distribución, al cierre del ejercicio 2018.

La estimación para el ejercicio 2017, no consideraba la demanda de amparo en contra de las Disposiciones Administrativas de Carácter General en materia de Generación Distribuida.

Inversión estimada de 1,177 millones de dólares. Considera una inversión promedio de 1.7 millones de dólares por MW de capacidad instalada con cifras de Bloomberg 2017

FUENTE: Comisión Reguladora de Energía (CRE)

De acuerdo con la CRE, para el año 2023 se espera una capacidad instalada de 4,121MW a través de contratos de interconexión en pequeña y mediana escala (Figura 9.1) lo que representa menos del 15% de la capacidad de alojamiento actual.

Ante la incertidumbre en la ubicación de las centrales de GD futuras, el bajo nivel de penetración de la generación distribuida y la capacidad de alojamiento actual de las RGD, se tiene garantizado actualmente el acceso abierto a la Generación Distribuida y no es necesario, por el momento, programar refuerzos para este propósito.

Electrificación de comunidades rurales y zonas urbanas marginadas

La reforma en materia energética tiene como uno de sus principales objetivos el promover un desarrollo incluyente en México y que la transformación del sector energético beneficie a todos los mexicanos, procurando el acceso universal a la energía eléctrica como una prioridad fundamental de la política energética. Además, considera que el acceso a la energía permitirá democratizar la productividad y la calidad de vida de la población en las distintas regiones del país. El Fondo del Servicio Universal Eléctrico (FSUE) es una de las herramientas con las que cuenta el Gobierno Federal para el cumplimiento de los objetivos nacionales de elec-

trificación. Se integra con el excedente de ingresos que resultan de la gestión de las pérdidas técnicas en el Mercado Eléctrico Mayorista, en los términos de las Reglas del Mercado, hasta en tanto se cumplan los objetivos nacionales de electrificación.

Proyecto 1. Fondo de Servicio Universal Eléctrico (FSUE)

El País tiene actualmente una cobertura eléctrica al cierre de 2018 del 98.75% de la población, con un servicio confiable, continuo y de calidad, sin embargo, aún pendientes de electrificar 1.63 millones de personas.

Para el desarrollo de proyectos en Comunidades Rurales o Zonas Urbanas Marginadas que se encuentren cerca de la red eléctrica de distribución, la acción de electrificación se deberá realizar preferentemente mediante la extensión de dicha red, lo cual se lleva a cabo a través de los Distribuidores. En caso de que la comunidad no se encuentre cerca de la red eléctrica de distribución se deberá implementar la solución técnica más económica, dando prioridad a aquella basada en fuentes de Energías Limpias y entre estas, las que generen un menor costo para los involucrados.

En 2018 se dio atención a 2,300 obras de electrificación en 30 Estados del país para beneficiar a 320 mil personas.

IX.2 Incrementar la eficiencia en la distribución de energía eléctrica

Reducir las pérdidas técnicas y no técnicas

La reducción de pérdidas de energía eléctrica es la acción prioritaria para lograr mejoras en la eficiencia del proceso de distribución de energía eléctrica. Durante el año 2018 la pérdida de energía eléctrica en las RGD ascendió a 31,455 GWh que representó el 13.45% de la energía recibida en media tensión, de los cuales 5.92 % corresponde a pérdidas técnicas y un 7.54 % a pérdidas no técnicas.

De 2012 a 2018, la pérdida de energía eléctrica en las RGD disminuyó debido a la aplicación de diferentes estrategias que permitieron disminuir consumos irregulares e invertir en proyectos de mo-

dernización de las RGD. Dichas acciones se llevan a cabo para alcanzar la meta establecida de un nivel de pérdidas equiparable con estándares internacionales de 8%.

Proyecto 1. Reducción de Pérdidas Técnicas

Las principales actividades para abatir y controlar las pérdidas técnicas son las siguientes y requiere de una inversión de 9,333 millones de pesos en el período 2019-2033.

- Construir nuevas troncales de alimentadores en la Red de Distribución de Media Tensión;
- Instalar equipos de compensación de potencia reactiva (fijos y controlados);
- · Reconfigurar la red de media tensión;
- · Recalibrar los conductores de circuitos;
- Dar seguimiento al programa de monitoreo de transformadores de distribución, y
- Crear nuevas áreas de distribución y mejorar las existentes.

Proyecto 2. Reducción de Pérdidas No Técnicas

Este proyecto consiste en la regularización de colonias populares, escalamiento de la medición a AMI y reemplazar medidores obsoletos. Las principales actividades para abatir y controlar pérdidas no técnicas son las siguientes:

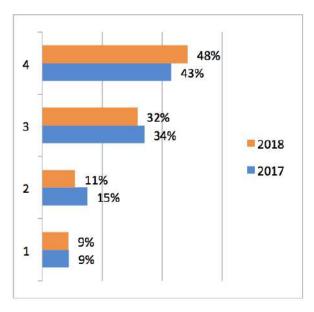
- Implementar nuevas tecnologías de medición y escalar medidores electrónicos de autogestión
- Reforzar los programas de verificación de los medidores en suministros de media tensión:
- · Sustituir los medidores obsoletos.
- Detectar anomalías en el proceso de medición y facturación de los servicios en media tensión en el mismo mes de facturación:

- Detectar y atender anomalías mediante selección estadística (automatizada) de servicios a verificar:
- Reordenar el proceso de comercialización de la energía eléctrica, incluyendo los sistemas informáticos de gestión, procesos operativos y la verificación y control de servicios:
- Modernizar y reubicar los medidores al límite de propiedad de los suministros susceptibles a usos informales por intervención de acometida o medidor;
- Ejecutar programas especiales de revisión y detección de anomalías en la facturación y cobranza, encaminados a la recuperación del costo de energía perdida mediante ajustes a la facturación, y
- Regularizar los servicios de energía eléctrica en áreas de conflicto social con la intervención de autoridades competentes y acercamiento a la comunidad con el apoyo del área de vinculación social.

Regularizar Colonias Populares

El proyecto comprende la regularización de 44.9 mil usuarios con una inversión 758 millones de pesos en el periodo 2019-2023. De esta forma, se pretende incorporar a los consumidores que no cuentan con contrato de suministro eléctrico y que tienen regularizado el uso de suelo, por lo que se considera la ampliación de la red de distribución en estas colonias que carecen de infraestructura eléctrica, y hacen uso de energía eléctrica de forma irregular.

Reemplazar Medidores Obsoletos


Se contempla reemplazar, en el periodo 2019-2023, 5.4 millones de medidores que se encuentran dañados o que ya cumplieron su vida útil, y representan una inversión aproximada de 7,000 millones de pesos.

IX.3 Incrementar la Calidad, Confiabilidad y seguridad en las RGD y en el Suministro Eléctrico

Modernizar y ampliar la infraestructura de las RGD

Las principales causas que afectan la Confiabilidad del Suministro de energía eléctrica en las RGD son: la presencia de objetos sobre las líneas (árboles, ramas, animales, otros) y fallas en dispositivos y equipos, entre otros (ver Figura 91.2). Las Unidades de Negocio que integran a la CFE Distribución utilizaron como meta los indicadores de desempeño establecidos en las Disposiciones Administrativas de Carácter General en Materia de Acceso Abierto y Prestación de los Servicios en la Red Nacional de Transmisión y las Redes Generales de Distribución de Energía Eléctrica, para evaluar la Confiabilidad y la Calidad del Suministro Eléctrico e identificar los requerimientos de equipos y sistemas para incrementar la Confiabilidad de la red.

FIGURA 9.2. CAUSAS PRINCIPALES QUE AFECTAN LOS INDICADORES DE CONFIABILIDAD DE LAS RGD

NOTA: 1. Animales, árbol o rama sobre línea, corrosión o falso contacto. 2. Falla de equipo (Apartarrayos o aislador), descargas atmosféricas, tormenta. 3. Choque o golpe, objetos ajenos sobre línea 4. Propagación de falla ajena a CFE, vandalismo, vientos fuertes, cortocircuito. Fuente CFE Distribución.

Proyecto 1. Incremento de la Confiabilidad de las RGD

El proyecto consiste principalmente, entre otros lo siguiente (ver Tabla 9.3.3):

- Instalación y/o reemplazo de 2,000 restauradores, 93,006 aisladores, 22,110 corta cortacircuitos fusibles, 20,627 apartarrayos.
- Refuerzo de 5.875 estructuras.

Proyecto 2. Modernización de las Subestaciones de Distribución

Los transformadores de potencia con más de 40 años en operación presentan una alta incidencia de falla y su antigüedad incrementa los tiempos de reparación.

Este proyecto considera el reemplazo, en el período 2019-2023, de 112 elementos de transformación de alta a media tensión en subestaciones de distribución para mantener la Confiabilidad del suministro de energía eléctrica y satisfacer la demanda. La inversión requerida para el periodo 2019-2023 es de 1,510 millones de pesos.

Proyecto 3. Modernización de las RGD

Los interruptores de potencia instalados en subestaciones de distribución de alta a media tensión y los transformadores de distribución de media a baja tensión con más de 30 años están sujetos a una mayor incidencia de fallas debido a los esfuerzos mecánicos y eléctricos a que han visto sometidos durante su vida útil. Su antigüedad incrementa considerablemente sus tiempos de reparación.

En este proyecto se considera el reemplazo, en el período 2019-2023 de de 1,021 interruptores de media tensión en subestaciones y de 4,491 transformadores de distribución de media a baja tensión.

Proyecto 4. Reemplazo del Cable Submarino de Isla Mujeres.

Es proyecto considera la sustitución del conductor submarino que suministra energía eléctrica al lado

insular del municipio de Isla Mujeres. Con 30 años en operación desde el año 1989 ha concluido su vida útil y está limitado en su capacidad de transmisión debido al daño estructural provocado por las embarcaciones.

Con este proyecto se incrementará la capacidad de transmisión del conductor submarino de Isla Mujeres a fin de satisfacer el crecimiento de la demanda en esta área de influencia. Además se mejorará la Calidad, Confiabilidad y seguridad del suministro de energía eléctrica a la Isla, tanto en condiciones normales de operación como en contingencias. se muestra en la Tabla 9.1

Tabla 6.1 Inversión por año para el p			Isla Mujeres
	Inversión (MDP)		
			TOTAL
Modernización del Cable Submarino de Isla Mujeres	114	138	252

Proyecto 5. Operación remota y automatismo en Redes de Distribución

Este programa tiene como objetivo garantizar una mejora operativa en la reducción del tiempo de restablecimiento del servicio de energía eléctrica y cantidad de clientes afectados, ante una falla en las Redes Generales de Distribución, a través de la adquisición de Equipo de Protección y Seccionamiento (EPROSEC) con Operación Remota y Automatismo. Esto para cumplir con las exigencias del regulador y aplicar las mejores prácticas de la industria en la eficiencia, Continuidad, Calidad y seguridad de la prestación del servicio público de distribución de energía eléctrica.

Se considera instalación de 4,857 equipos restauradores telecontrolados, para niveles de tensión de 13.8 kV hasta 34.5 kV, en un periodo de 5 años, para cumplir con los indicadores de Confiabilidad y Calidad de la Potencia de la energía eléctrica en la prestación del servicio de energía eléctrica en los que están establecidos los tiempos máximos de la duración promedio de las interrupciones y la frecuencia de estas. Este programa también pertenece al desarrollo de redes inteligentes de distribución.

Actualmente, debido a que los equipos de seccionamiento instalados son de operación manual, se tiene un tiempo de restablecimiento incierto, ya que depende del horario en el que ocurra la falla, del tiempo de localización de la falla, de la configuración de la red, de la ubicación y número de equipos de protección y seccionamiento instalados, de la habilidad y disponibilidad del personal encargado del restablecimiento del suministro y de las condiciones climatológicas.

IX.4. Cumplir los requisitos del Mercado Eléctrico para las RGD

Las condiciones establecidas en el artículo 37 de la LIE y en la base 16 de las Bases del Mercado Eléctrico Mayorista, hacen necesario obtener el balance de energía en los puntos de intercambio de las denominadas Zonas de Carga e intercambio de energía entre zonas. De esta forma, se requiere desarrollar la infraestructura y software necesarios para obtener una medición confiable para el proceso de liquidación de todos los Participantes del Mercado Eléctrico Mayorista.

Construir la infraestructura para participar en el Mercado Eléctrico.

Proyecto 1. Gestión del Balance de Energía de las Redes Generales de Distribución para el Mercado Eléctrico Mayorista.

Implementar los sistemas de medición y comunicaciones necesarias para que las liquidaciones del Mercado Eléctrico Mayorista, se puedan realizar de manera diaria y horaria, minimizando la incertidumbre para el MEM. Con esto, se podrá dar cumplimiento a los requerimientos funcionales determinados en las Reglas del Mercado, garantizando con ello, que el uso de las Redes Generales de Distribución se realice de manera correcta, transparente y en apego a lo establecido en la Ley de la Industria Eléctrica en su artículo 37 y Base 16 del Mercado Eléctrico Mayorista.

El proyecto comprende la medición en puntos de intercambio al interior y exterior de subestaciones eléctricas.

Para la medición en puntos de intercambio al exterior de subestaciones eléctricas del MEM se requiere que CFE Distribución cuente con 1,207 puntos,

en las trayectorias de los circuitos de Distribución, de los cuales actualmente ninguno cumple con los requisitos mandatados por el CENACE.

Para la medición en puntos de intercambio al interior de las subestaciones eléctricas del MEM se requiere que CFE Distribución cuente con 14,153 puntos, de los cuales actualmente ninguno cumple con los requisitos mandatados por el CENACE.

Para cumplir con los requisitos solicitados por el CENACE para los puntos de intercambio, es necesario el suministro de equipos y materiales de medición, comunicaciones, puesta en servicio, mantenimiento y sistema de monitoreo para cada punto de intercambio.

Por lo anterior, en la tabla 9.2 se muestra la necesidad de acciones y elementos por cada punto de medición para cumplir con los requisitos solicitados por el CENACE.

Tabla 9.2. Equipamiento necesario en las subestaciones de distribución				
División de CFE Distribución				
Baja California	926	926		
Noroeste	1 283	1 283		
Norte	1 180	1 180		
Golfo Norte	1 815	1 815		
Centro Occidente	844	844		
Centro Sur	704	704		
Oriente	780	780		
Sureste	940	940		
Valle de México Norte	527	527		
Valle de México Centro	450	450		
Valle de México Sur	502	502		
Bajío	1 341	1 341		
Golfo Centro	650	650		
Centro Oriente	649	649		
Peninsular	762	762		
Jalisco	800	800		
Nacional	14 153	14 153		

IX.5. Transitar hacia una Red Eléctrica Inteligente (REI)

De acuerdo con la LIE el despliegue de las REI debe contribuir a mejorar la eficiencia, Confiabilidad, Calidad y seguridad del SEN con la incorporación de tecnologías avanzadas de medición, monitoreo, comunicación y operación, entre otras, que facilite el acceso abierto y no indebidamente discriminatorio

a la RNT y a las RGD, y permitir la integración de las fuentes de energías limpias y renovables.

De conformidad con el Articulo 37 de la Ley de Transición Eléctrica (LTE), la implementación de las REI tiene como objetivo apoyar la modernización de la RNT y de las RGD, para mantener una infraestructura confiable y segura que satisfaga la demanda eléctrica de manera económicamente eficiente y sustentable y que facilite la incorporación de nuevas tecnologías que promuevan la reducción de costos del sector eléctrico.

La LTE indica además que el Programa de REI deberá identificar, evaluar, diseñar, establecer e instrumentar estrategias, acciones y proyectos en materia de redes eléctricas, entre las que se podrán considerar las siguientes:

- El uso de información digital y de tecnologías de control para mejorar la confiabilidad, estabilidad, seguridad y eficiencia de la Red Nacional de Transmisión y de las Redes Generales de Distribución;
- La optimización dinámica de la operación de la Red Nacional de Transmisión y de las Redes Generales de Distribución, y sus recursos:
- El desarrollo e integración de proyectos de Generación Distribuida, incluidos los de generación a partir de fuentes de Energía Renovables;
- El desarrollo y la incorporación de la demanda controlable y de los recursos derivados de la Eficiencia Energética;
- El despliegue de tecnologías inteligentes para la medición y comunicación en las REI;
- La integración de equipos y aparatos inteligentes a la Red Nacional de Transmisión y a las Redes Generales de Distribución;
- El desarrollo de estándares de comunicación e interoperabilidad de los aparatos y equipos conectados a la Red Nacional de transmisión y a las Redes Generales de

Distribución, incluyendo la infraestructura que le da servicio a dichas Redes;

- La información hacia los consumidores y opciones para el control oportuno de sus recursos:
- El desarrollo e integración de tecnologías avanzadas para el almacenamiento de electricidad y de tecnologías para satisfacer la demanda en horas pico;
- La identificación y utilización de capacidad de generación eléctrica subutilizada para la sustitución de combustibles fósiles por energía eléctrica en los sistemas de transporte, incluyendo la recarga de vehículos eléctricos:
- La promoción de protocolos de interconexión para facilitar que los Suministradores puedan acceder a la electricidad almacenada en vehículos eléctricos para satisfacer la demanda en horas pico;
- · La identificación y reducción de barreras para la adopción de REI, y
- La investigación sobre la viabilidad de transitar hacia un esquema de precios de la electricidad en tiempo real o por periodos de uso.

El proyecto de REI prevé la integración de Tecnologías de Información y Comunicación (TIC's) en los elementos de medición, monitoreo y operación del SEN, a través de los sistemas y módulos que lo integran.

Desarrollar e incorporar sistemas y equipos que permitan una transición a una REI.

Proyecto 1. Sistema de información geográfica de las Redes Generales de Distribución

Este proyecto tiene el propósito de unificar las diferentes tecnologías de información geográfica y eléctrica de las RGD con que cuenta actualmente CFE Distribución, a través de un Sistema de Información Geográfica que le permita integrar dichas tecnologías y contar con la capacidad para compartir e intercambiar información espacial de la in-

fraestructura del sistema de distribución. A través de un bus de datos basado en el modelo CIM, se puede lograr la máxima eficiencia en la realización de actividades empresariales, apoyándose en fuentes de información geográfica e información correlacionada con el proceso de distribución interno y externo. Esto fue planeado en 5 fases.

Fase I

La primera Fase consistió en la adquisición instalación y puesta en operación del equipamiento de hardware y software necesario para construir la plataforma tecnológica. Esta fase inició en el año 2011 con la intervención de la CFE en el Valle de México y se encuentra actualmente concluida.

Fase II

La segunda Fase se inició en el año 2015 y consiste en la actualización de sistemas para la adquisición de datos obtener la información geográfica, eléctrica y administrativa a partir de las plataformas tecnológicas existentes. Se encuentra concluida.

Fase III

A partir de lo anterior en 2016 inició la Fase III la cual consiste en redefinir el alcance de los datos de negocio a digitalizar, implementación de la nueva plataforma Geoespacial, migración de Aplicaciones legadas a la nueva plataforma Geoespacial, la Fase III concluye en diciembre 2019.

Fase IV

La Fase IV se llevará a cabo en 2019, 2020 la cual consiste en levantamientos en campo de al menos 31 datos geoespaciales, como los siguientes:

- Coordenadas geográficas, altura, resistencia, material e identificador de estructuras de soporte para redes aéreas.
- Coordenadas geográficas, material, calibre, número y secuencia de fases de líneas aéreas y subterráneas de media y baja tensión.
- Coordenadas geográficas, marca, tipo e identificador de los equipos de protección y seccionamiento.
- Coordenadas geográficas, marca, tipo, identificador, capacidad nominal, núme-

ro de fases y propietario de transformadores de AT/MT.

- · Coordenadas geográficas, marca, tipo, identificador, capacidad nominal, número de fases de reguladores de tensión.
- Coordenadas geográficas, marca, tipo, identificador, capacidad nominal, de bancos de capacitores.
- Coordenadas geográficas, número de fases, identificador del medidor, tipo de servicios de suministro conectados a las RGD
- Coordenadas geográficas, número de fases, identificador del medidor, tipo de centrales eléctricas de generación distribuida interconectados a las RGD.

Fase V

La Fase V se ejecutará en paralelo a la Fase IV consiste en el desarrollo de aplicaciones de software para atender necesidades negocio y agilizar la Toma de Decisiones.

Actualmente el Sistema de Información Geográfica (SIG), ha sido desarrollado por CFE y su infraestructura se ha llevado a cabo en equipamiento de servidores. La base principal del sistema ya se encuentra operando y como parte de sus ventajas está la de poder explotar la información de los diferentes procesos en un solo lugar, y se han desarrollado en torno a la información conjunta, como son:

- El seguimiento de las variaciones de tensión.
- La ubicación de zonas de conflicto en el Valle de México.
- El sistema nacional de atención de emergencias con georreferenciación.
- · La localización vehicular.
- Proyectos mineros.
- · Contar con la cartografía del INEGI.

- · Detección de usos ilícitos de energía.
- · Programa Luz para México.
- Tu gobierno en mapas.
- Atención de solicitudes.
- · Seguridad física en Instalaciones.
- Así como las nuevas posibilidades de análisis.

La herramienta funcionará como plataforma que unificará toda la información que se genera de las instalaciones y usuarios con que cuenta la empresa, lo que permitirá realizar un análisis global de lo que ocurre en las RGD y tener los elementos necesarios para una mejor toma de decisiones en la planeación y operación del sistema de distribución.

Proyecto 2. Infraestructura de Medición Avanzada

Este programa consiste en la adquisición equipamiento operativo para que los medidores de Infraestructura Avanzada de Medición tipo AMI existentes en los polígonos de los proyectos terminados, continúen operando en las condiciones óptimas con las que se diseñó.

El proyecto considera la compra de medidores para nuevos usuarios dentro de los polígonos mencionados y reemplazo de medidores y equipos de comunicación dañados.

Este proyecto conservará la eficiencia de la información obtenida de los polígonos de los proyectos concluidos y actualmente en operación, considerando la atención a dos condiciones que se presentan en dichos polígonos:

- · Crecimiento de nuevos usuarios.
- Reemplazo de medidores y equipos de comunicación dañados.

La Infraestructura de Medición Avanzada es fundamental para el desarrollo de la Red Eléctrica Inteligente debido a que permite tener una eficiente recolección de datos, aumentar la consistencia de

la información, adicionalmente es necesario dar atención a las solicitudes en la zona geográfica con la misma tecnología, para conservar el esquema de diseño del sistema de medición en todo el polígono.

En la Tabla 9.3 se observan las metas físicas de adquisición y reemplazo de medidores por año, para el periodo 2019-2023.

Tabla 9.3. Cantidad de medidores AMI a adquirir por remplazo y crecimiento					
	MEDIDORES				
					2023
Baja California	514	514	514	514	514
Noroeste	442	442	442	442	442
Norte	60	60	74	74	74
Golfo Norte	170	170	170	170	170
Centro Occidente	87	87	87	87	87
Centro Sur	1807	1 867	1867	1 867	1867
Oriente	177	196	196	196	196
Sureste	1 098	1 549	1 621	1 621	1 621
Valle de México Norte	2 215	5 491	7 883	7 883	7 883
Valle de México Centro	3 596	4 899	5 817	5 817	5 817
Valle de México Sur	997	6 571	6746	6746	6746
Bajío	580	580	585	585	585
Centro Oriente	83	83	83	83	83
Peninsular	1 494	1 494	1 494	1 494	1 494
Jalisco	192	192	192	192	192
Nacional	13 512	24 195	27 771	27 771	

Proyecto 3. Sistema de Administración de Distribución Avanzado.

El objetivo de este proyecto es desarrollar una versión a pequeña escala de un ADMS para determinar los impactos sobre la eficiencia operativa, la eficiencia del sistema, la confiabilidad, la seguridad, así como otras áreas de la empresa. El comportamiento del AMDS en el proyecto piloto será utilizado para determinar si se justifica el desarrollo de un sistema completo para todo el SEN.

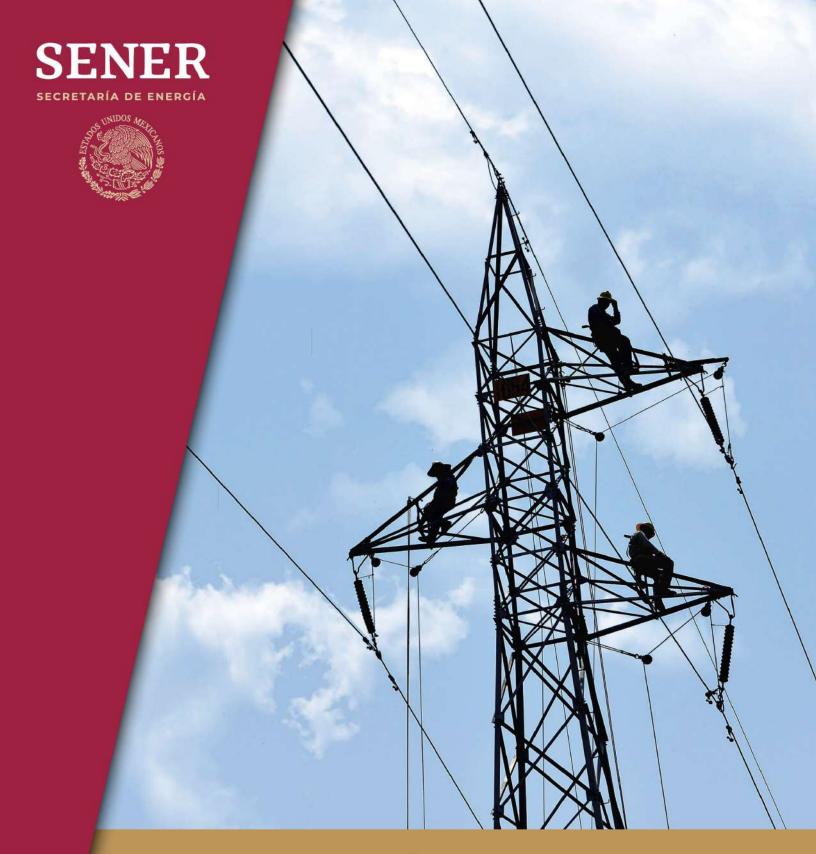
La inversión estimada para el desarrollo del proyecto piloto es de 203 millones de pesos.

Este proyecto piloto tiene el propósito de evaluar las capacidades de un Sistema Avanzado de Administración de Distribución (ADMS por sus siglas en inglés), con el cual se incluye también un sistema incrustado para la administración de interrupciones (OMS por sus siglas en inglés), a través de un proyecto de demostración. Con el fin de evaluar correctamente las capacidades del ADMS. El proyecto incluye el despliegue del ADMS para automatizar las subestaciones del proyecto piloto para probar las funcionalidades avanzadas de este sistema y consta de dos fases de estudio y tres de demostración.

Debido a la necesidad de garantizar la distribución de la energía suministrada por los diferentes participantes del mercado eléctrico mayorista se requiere lo siguiente: Unidades Centrales Maestras (UCM), Sistema de Información de Subestaciones (SISE), Dispositivo Electrónico Inteligente (DEI), Unidades Terminales Remotas (UTR), Equipo primario de SE y Canales de Comunicación SCADA, destinadas a equipar y modernizar la infraestructura de control operativo de acuerdo al Código de Red emitido por la Comisión Reguladora de Energía que establece los criterios generales para la integración de elementos de medición monitoreo y operación del SEN que utilizan tecnologías de la información y comunicación (TIC) bajo un marco que promueva e impulse la interoperabilidad éstos a fin de evitar la incompatibilidad de la infraestructura tecnológica e incrementar la eficiencia operativa de la red eléctrica, como se muestra en la Tabla 9.4.

Tabla 9.4. Tiempos requeridos para la ejecución de las fases		
Tipo	Fase	
	Fase 1: Requerimientos documentales y adquisición del ADMS piloto: 9 a 12 meses	
Estudio	Fase 2: Selección de la región óptima en la Cd. de Morella Michoacán para el desarrollo del proyecto piloto: 9 a 12 meses concurrentes con la Fase 1.	
	Fase 3: Desarrollo del ADMS en etapas. Componentes principales del ADMS: 6 a 12 meses. Ablicaciones avanzadas: 6 a 12 meses.	
Demostración	Fase 4: Medición y verificación: 2 a 3 años. Fase 5: Caso de negocio para el desarrollo de un sistema ADMS completo: 3 meses	
Implementación		

A través del desarrollo del proyecto piloto se espera obtener una visión completa del funcionamiento de un ADMS, así como poder medir los beneficios que este tipo de sistemas aporta a la operación de la red de distribución de energía eléctrica al ser comparados con los costos implicados en la operación de la porción de la red seleccionada para aplicar el proyecto piloto sin la asistencia del ADMS. Además, es necesario llevar a cabo el proyecto piloto dado que los impactos y beneficios esperados de una plataforma integrada de este tipo, son difíciles de obtener dado que debe llevarse a cabo una evaluación detallada y cuidadosa de los costos evitados.


Proyecto 4. Nuevo Sistema de Gestión Empresarial de Distribución-Suministro

El objetivo es llevar a cabo la adquisición de los derechos de uso e implementación del software que cubre las funcionalidades que se realizan con los sistemas SICOM, SICOSS, SIMED, IAT y otros sistemas periféricos a éstos que atienden la operación de los siguientes procesos de negocio: Facturación y Cobranza, Atención a Clientes, Gestión de Energía, Medición, Conexiones y Servicios y Gestión de Interrupciones.

Actualmente estos sistemas tienen su poca flexibilidad derivado de su antigüedad que no permiten operar como un sistema inteligente, que permita reducir los tiempos de atención en la operación de fallas, atención de solicitudes de servicio, control de los sistemas que atienden a la red eléctrica, cobranza entre otras.

En la Tabla 9.5 se observa la descripción de cada módulo, los beneficios que se pretende obtener, son reducción anual de Pérdidas no técnicas de Energía de 0.8% anual, se incrementará en un 77% el cumplimiento de compromisos de atención con el ciudadano y se incrementa en un 42% la satisfacción del ciudadano.

Tabla 9.5. Módulos que componen el proyecto.		
SUITE SICOM		
Módulos para el área Comercial	Descripción	
Administración de la Comercialización de Energía y Riesgo (ETRM)	Se utiliza para colocación de ofertas de compra y venta de energía en el MEM	
Contact CENTER (071)	Se utiliza por los ejecutivos de servicio del para la atención al cliente	
Facturación y Cobranza (B&C)	Se utiliza para la emisión de Facturas y seguimiento de la Cobranza	
Administración de las Relaciones con los clientes (CRM)	Se utiliza para registrar todos los contactos que se tienen con los clientes	
Módulos para Distribución	Descripción	
Administración de los Datos de Medición (MDM)	Se utiliza para gestionar los datos de medición, desde su extracción hasta publicación para facturar	
Administración de la Fuerza de Trabajo Móvil (MWFM)	Se utiliza para gestionar las ordenes de trabajo de personal de campo	
Gestión de Interrupciones	Se utiliza para gestionar las interrupciones y sirve para mejorar la atención al cliente	

Anexo.

PRODESEN 2019-2033

PROGRAMA DE DESARROLLO DEL SISTEMA ELÉCTRICO NACIONAL

TABLA 9.1.1 METAS PARA LA ADQUISICIÓN DE ACOMETIDAS Y MEDIDORES

		2019			2020			2021			2022			2023			Total	
	Acom	Med.	1	Acom	Med.	21	Acom	Med.	Na.	Acom	Med.	2	Acom	Med.	M	Асош	Med.	Au
División	(km)	(Miles)	MDP	(km)	(Miles)	MDP												
Baja California	2,018	47	95	2,078	49	86	2,141	20	101	2,205	25	104	2,271	54	107	10,713	252	505
Bajío	4,876	267	383	5,023	275	395	5,174	283	407	5,329	292	419	5,489	301	432	25,891	1,418	2,036
Centro Occidente	3,457	122	183	3,561	125	188	3,668	129	194	3,778	133	200	3,891	137	206	18,355	646	971
Centro Oriente	3,577	189	284	3,685	195	292	3,796	201	301	3,909	207	310	4,026	213	319	18,993	1,005	1,506
Centro Sur	5,511	160	236	2,676	165	243	5,847	170	251	6,022	175	258	6,203	180	266	29,259	850	1,254
Golfo Centro	1,729	89	139	1,780	92	143	1,834	94	148	1,889	26	152	1,946	100	157	9,178	472	739
Golfo Norte	4,612	169	324	4,750	174	334	4,893	179	344	5,040	185	355	5,191	191	366	24,486	868	1,723
Jalisco	2,872	179	278	2,958	184	287	3,047	190	295	3,138	195	304	3,232	201	313	15,247	676	1,477
Noroeste	2,167	122	258	2,232	126	265	2,300	129	273	2,369	133	282	2,440	137	290	11,508	647	1,368
Norte	2,971	116	193	3,060	119	199	3,152	123	205	3,247	126	211	3,344	130	217	15,774	614	1,025
Oriente	4,372	145	246	4,503	146	253	4,639	150	261	4,778	155	569	4,921	160	777	23,213	753	1,306
Peninsular	2,299	108	210	2,368	111	217	2,440	114	223	2,513	118	230	2,588	122	237	12,208	573	1,117
Sureste	3,551	224	325	3,658	230	334	3,768	237	344	3,881	244	355	3,997	251	366	18,855	1,186	1,724
Valle de México Centro	2,381	75	132	2,453	78	135	2,527	80	140	2,602	82	144	2,680	84	148	12,643	399	669
Valle de México Norte	3,600	149	241	3,707	154	248	3,819	158	256	3,934	163	264	4,052	168	272	19,112	792	1,281
Valle de México Sur	5,317	195	312	5,476	200	321	5,641	206	331	5,810	213	341	5,984	219	351	28,228	1,033	1,656
Total	55,310	2,353	3,839	56,968	2,423	3,952	58,686	2,493	4,074	60,444	2,570	4,198	62,255	2,648	4,324	293,663	12,487	20,387

TABLA 9.3.3 METAS FÍSICAS PARA MEJORAR LA CONFIABILIDAD DE LAS RGD

Equipo para Confiabilidad	2019	2020	2021	2022	2023	Total
Restaurador	460	420	400	380	340	2 000
Aisladores	21 392	19 531	18 601	17 671	15 811	93 006
CCFs	5 085	4 643	4 422	4 201	3 759	22 110
Apartarrayos	4 744	4 332	4 125	3 919	3 507	20 627
Protectores para Poste	1 351	1 234	1 175	1 116	999	5 875

FUENTE: CFE Distribución

SENER SECRETARÍA DE ENERGÍA

PRODESEN 2019-2033

PROGRAMA DE DESARROLLO DEL SISTEMA ELÉCTRICO NACIONAL